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Abstract1

We examine topological properties of spaces of paths and graphs mapped to Rd under the Fréchet2

distance. We show that the spaces of graphs and paths mapped to Rd are path-connected if the map3

is either continuous or an immersion. If the map is an embedding, we show that the space of paths4

is path-connected, while the space of graphs only maintains this property in dimension 4 or higher.5
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1 Introduction6

Motivated by the ubiquitous nature of one-dimensional data in a Euclidean ambient space8

(road networks in R2, for example), we investigate spaces of paths and graphs in Rd. In9

particular, we examine these spaces in relation to the Fréchet distance, which is widely10

studied in the computational geometry literature [1–3, 5–7]. We work with three classes11

of paths: the set ΠC of all paths continuously mapped into Rd, the set ΠE of all paths12

embedded in Rd, and the set ΠI of all paths immersed in Rd. In addition, we study three13

analogous spaces of graphs: the set GC of all graphs continuously mapped into Rd, the set GE14

of all graphs embedded in Rd and the set GI of all graphs immersed in Rd. See Figure 1 for15

examples of paths in R2. We then topologize these sets using the open ball topology under16

the Fréchet distance, and study their path-connectedness property.17

2 Background18

We define the Fréchet distance for graphs, inspired by the Fréchet distance among paths [1].21

Let G be an abstract graph, and let φ, ψ : G→ Rd be continuous, rectifiable maps. Given22

any homeomorphism h : G→ G, we say that the induced L∞ distance between the maps φ23
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Figure 1 The images of an element in ΠC, ΠE , and ΠI respectively, mapped in R2.7

and ψ ◦ h is ||φ−ψ ◦ h||∞ = maxx∈G |φ(x)−ψ(h(x))|. With this distance in hand, we define24

the Fréchet distance between (G,φ) and (G,ψ) by minimizing over all homeomorphisms: 1
25

dFG ((G,φ), (G,ψ)) := min
h
||φ− ψ ◦ h||∞26

We now define and provide context for the underlying spaces that are studied in this27

work. Recall from above that ΠC denotes the set of all continuous mappings α : [0, 1]→ Rd.28

The set ΠE of embedded paths in Rd results from further specifying that α is injective, and29

the set ΠI of immersed paths in Rd results from requiring only local injectivity of α. Note30

that ΠE ( ΠI ( ΠC and elements of ΠC ,ΠE , and ΠI are deemed equivalent if the image of31

their underlying map α is equivalent, giving a path-Fréchet distance (denoted dFP ) of zero.32

We define the analogous spaces of graphs, letting G be an abstract graph and GC(G)33

denote the set of all continous mappings φ : G → Rd. Similarly, we define the set of34

embeddings GE(G) with the added requirement that φ be injective, and the set of immersions35

GI with the requirement that φ need be only locally injective. Note that elements of GC ,GI ,36

and GE are equivalent (with graph Fréchet distance zero) if their underlying graphs belong to37

the same homeomorphism class, and if the image of their accompanying map φ is equivalent.38

3 Results39

I Theorem 1 (Continuous Mappings). The topological spaces of continuous mappings of40

paths (ΠC , dFP ) and continuous mappings of graphs (GC(G), dFG) in Rd are path-connected.41

Proof Sketch. Let φ0, φ1 ∈ ΠC. Naively, a path may be constructed from φ0 to φ1 by44

interpolating φ0 to φ1 along the pointwise matchings (so-called leashes) defining dFP (φ0, φ1).45

The same technique may be extended to demonstrate the path-connectivity of GC(G). J46

I Theorem 2 (Immersions). The topological spaces of immersions of paths (ΠI , dFP ) and47

immersions of graphs (GI(G), dFG) in Rd are path-connected.48

1 Other generalizations of the Fréchet distance minimize over all “orientation-preserving” homeomorphisms,
which can be defined in several ways for stratified spaces. We drop this requirement in our definition.
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Figure 2 The sequence of moves to continuously conduct self crossings in ΠI .43

Proof Sketch. Let φ0, φ1 ∈ ΠI , and construct a path Γ : [0, 1] → ΠI as in Theorem 1 by49

interpolating φ0 to φ1 along the pointwise matchings defining dFP (φ0, φ1). At some t ∈ [0, 1],50

φt = Γ(t) could create an intersection not present in φ0. This may collapse an entire region51

of the image of φt, rendering φt no longer an immersion. Then, there exists ε > 0 such that52

Γ(t − ε) = φt−ε has t∗ ∈ [0, 1] where φt−ε(t∗) is δ > 0 away from a new self-intersection,53

and t∗ comes sufficiently close to minimizing δ. At this time t − ε, suspend interpolation54

along all leashes, and continuously inflate a small δ∗-neighborhood φt−ε|(t∗−δ∗,t∗+δ∗) about55

the point φt−ε(t∗) in the image of φt−ε so that the leash lengths for every point in the56

δ∗−neighborhood equal the leash length defined at φt−ε(t∗). Then directly perturb φt−ε(t∗)57

by 2δ along its unique leash such that the crossing at φt−ε(t∗) occurs, and the crossing point58

defined by t∗ again lies δ away from a self intersection, and 2δ away from its original position59

in the final image of φt. See Figure 2d. Repeat the process for any subsequent crossings in60

the interpolation. An analogous path can be constructed for graphs. J61

I Theorem 3 (Path Embeddings). The space (ΠE , dFP ) is path-connected.62

Proof Sketch. Let φ0, φ1 ∈ ΠE . There exists a canonical path from φ0 to φ1 by condensing63

each map toward its center until the images are "nearly straight", continuously mapping each64

image to a straight segment, and then interpolating as in Theorem 1. J65

I Theorem 4 (Graph Embeddings). The topological space of graphs (GE(G), dFG) embedded66

in Rd is path-connected if d ≥ 4.67

Proof Sketch. Examining the path-connectivity of GE under the Fréchet distance reduces to68

a knot theory problem for d ≤ 3. For d ≥ 4, there exists a sequence of Reidemeister moves69

from any tame knot to another. Hence, if φ0, φ1 ∈ GE , we construct a path by interpolating70

along the pointwise matchings between φ0 and φ1 as in Theorem 1. If a self intersection would71

be created, we suspend interpolation elsewhere and conduct the corresponding Reidemeister72

move. Repeat the process for all intersections thereafter, until attaining the image of φ1. J73

I Corollary 5 (Path-Connectivity of Metric Balls). Metric balls in the space ΠC ,GC(G),ΠI ,74

and GI(G) are path-connected.75

Proof Sketch. Note that the techniques used in Theorem 1 and Theorem 2 never strictly76

increase the Frechet distance among two images of corresponding maps, so metric balls in each77

space are path-connected. For Theorem 2 this relies on the inflation step in Figure 2c, which78

assures that the Fréchet distance is fixed during a crossing event. The paths constructed in79

Theorem 3 and Theorem 4 do not necessarily maintain this property. J80

CVIT 2016



23:4 Path-Connectivity of Fréchet Spaces of Graphs

References81

1 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal82

curves. IJCGA, 5(1–2):75–91, 1995.83

2 Kevin Buchin, Maike Buchin, and André Schulz. Fréchet distance of surfaces: Some simple84

hard cases. In European Symposium on Algorithms, pages 63–74. Springer, 2010.85

3 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. Computing the Fréchet distance86

between real-valued surfaces. In Proceedings of the Twenty-Eighth Annual ACM-SIAM87

Symposium on Discrete Algorithms, pages 2443—-2455. ACM, 2017.88

4 Maike Buchin, Erin Chambers, Pan Fang, Brittany Terese Fasy, Ellen Gasparovic, Elizabeth89

Munch, and Carola Wenk. Distances between immersed graphs: Metric properties, 2021.90

5 Maike Buchin, Amer Krivosija, and Alexander Neuhaus. Computing the Fréchet distance of91

trees and graphs of bounded tree width. In Proceedings of the 36th European Workshop on92

Computational Geometry, 2020.93

6 Erin Wolf Chambers, Éric Colin de Verdière, Jeff Erickson, Sylvain Lazard, Francis94

Lazarus, and Shripad Thite. Homotopic fréchet distance between curves or, walk-95

ing your dog in the woods in polynomial time. Computational Geometry, 43(3):295–96

311, 2010. Special Issue on 24th Annual Symposium on Computational Geome-97

try (SoCG’08). URL: https://www.sciencedirect.com/science/article/pii/98

S0925772109000637, doi:https://doi.org/10.1016/j.comgeo.2009.02.008.99

7 Pan Fang and Carola Wenk. The Fréchet distance for plane graphs. In Proceedings of the100

37th European Workshop on Computational Geometry, 2021.101

A Additional Definitions Adapted from Topology and Geometry102

I Definition 6. The Open Ball Topology: Let X be a set and d : X× X→ R≥0 a distance (d103

need not be a metric). For each r ≥ 0 and x ∈ X, let Bd(x, r) := {y ∈ X | d(x, y) ≤ r}; in104

words, Bd(x, r) denotes the open ball of radius r centered at x with respect to distance d. We105

use these open balls to generate a topology on X, allowing x to range over X and r to range106

over all positive real numbers.107

I Definition 7. Path-Connectivity: A topological space X is called path-connected if for108

any a, b ∈ X, there exists a continuous map Γ: [0, 1] → X joining a and b, i.e., Γ(0) = a109

and Γ(1) = b. In this article, our attention is restricted to the Euclidean ambient space, so110

X = Rd.111

I Definition 8. The Fréchet Distance for Paths: Any continuous map α : [0, 1] → Rd is112

called a path in Rd. Let ΠC denote the set of all paths in Rd. Then, the Fréchet distance113

dFP : ΠC ×ΠC → R≥0 between α1, α2 ∈ ΠC is defined as:114

dFP (α1, α2) := min
r : [0,1]→[0,1]

max
t∈[0,1]

|α1(t)− α2(r(t))|115

where r ranges over all reparameterizations of the unit interval (that is, homeomorphisms116

such that r(0) = 0 and r(1) = 1), and | · | denotes the standard Euclidean norm.117

I Remark 9. If G = I, then the relationship between the Fréchet distance between two paths118

α, β : I → Rd and the corresponding graphs (I, α), (I, β) is as follows:119

dFG ((I, α), (I, β)) = min
{
dFP (α, β), dFP (α, β−1)

}
,120

where β−1 : I → Rd is defined by β−1(t) = β(1− t).121

https://www.sciencedirect.com/science/article/pii/S0925772109000637
https://www.sciencedirect.com/science/article/pii/S0925772109000637
https://www.sciencedirect.com/science/article/pii/S0925772109000637
https://doi.org/https://doi.org/10.1016/j.comgeo.2009.02.008
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I Definition 10 (Linear Combination of Graphs). Let G denote an abstract graph. Let φ0 : G→122

Rd and φ1 : G→ Rd be continuous, and let G0 = (G,φ0) and G1 = (G,φ1). If h : G→ G is123

a homeomorphism and c0, c1 ∈ R, then the linear combination c0G0 + c1G1 with respect to h124

is defined as follows: we define φ : G→ Rd by φ(x) := c0φ0(x) + c1φ1(x). In short, we write125

c0G0 + c1G1 = (G,φ).126

Above, we observe that φ is continuous (since φ0 and φ1 are continuous). In addition,127

we note that linear combinations of graphs are defined on the specific representations of the128

continuously mapped graphs, not on the elements of GC. It is possible that two graphs are129

homemorphic G0 ∼= G′0, but the corresponding linear combinations are not (c0φ0 + c1φ1) 6∼=130

(c0φ
′
0 + c1φ1).131

B Spaces of Continuous Maps in Rd
132

The proof sketch outlined in Theorem 1 is sufficient to demonstrate the path-connectivity of133

ΠC, and can be extended to demonstrate the path-connectivity of GC. The following section134

will make the proof in Theorem 1 rigorous in the context of graphs.135

I Theorem 11 (Path Connectivity of Graphs Continuously Mapped to Rd). Let G be a136

graph. Then, the metric space (GC(G), dFG) is path-connected. Moreover, the connected137

components of the extended metric space (GC , dFG) are in one-to-one correspondence with138

the homeomorphism classes of graphs, making fully rigorous the proof of Theorem 1.139

Proof. Let G0 = (G,φ0),G1 = (G,φ1) ∈ GC , for an abstract graph G. Demonstrating the
path-connectivity of GC amounts to finding a continuous map Γ: I → GC in the extended
metric space (GC , dFG) such that Γ(0) = G0 and Γ(1) = G1. To define this map Γ, we use
linear interpolation:

Γ(t) := (1− t)G0 + tG1,

where (1− t)G0 + tG1 is a linear combination of G0 and G1 (using c0 = 1− t and c1 = t140

in Definition 10). From Definition 10, at any t ∈ I, Γ(t) is well defined in the space of141

continuous mappings since any such linear combination of graphs represents a continuous142

from the underlying abstract graph to GC . Final verification that the constructed Γ is itself143

continuous is left to Lemma 12.144

J145

I Lemma 12. The space (GC(G), dFG) is path-connected because the map Γ constructed in146

Theorem 11 is continuous.147

Proof. To see that Γ is continuous, examine an open set S ⊂ image(Γ) given by S := (S1∩S2)148

where S1, S2 are defined as follows with δ1, δ2 <
1
2 :149

S1 := {G ∈ GC(G) | dFG(G,G1) < dFG(((1− δ1)G0 + δ1G1),G1)

S2 := {G ∈ GC(G) | dFG(G,G0) < dFG(((1− δ2)G1 + δ2G0),G0)}

Indeed, S by construction is open in (GC(G), dFG). Additionally, S comprises any arbitrary150

connected open subset of image(Γ). By design, Γ−1(S) = (δ2, δ1) ⊂ I, which is open. So, S151

or any union or finite intersection of open sets S′, S′′, ... constructed in the same way as S152

comprises any arbitrary open set in image(Γ). Further, since Γ−1 acting on any open set is153

open by design, Γ is continuous, and (GC(G), dFG) is path-connected. J154

CVIT 2016
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C Spaces of Immersions in Rd
155

Recall that if a path is only locally an embedding, it is called an immersion. More formally,156

a path γ : [0, 1] → Rd is called an immersed path if for any t ∈ (0, 1) there exists δ > 0157

such that γ|(t−δ,t+δ) is injective; see Figure 1. To show path-connectivity of spaces of158

immersions, the proofs for Theorem 1 and Theorem 11 for continuously mapped paths and159

graphs almost suffice. However, the intermediate paths in ΠC and graphs in GC might not be160

immersions. The added steps in the proof sketch for Theorem 2 are sufficient to demonstrate161

the path connectivity of the topological space (ΠI , dFP ), and here we extend this technique to162

demonstrate path-connectivity for the space (GI(G), dFG).163

I Theorem 13 (Path-Connectivity of the Space of Graphs Immersed in Rd). Let G be a164

graph. Then, the topological space (GI(G), dFG) is path-connected. Moreover, the connected165

components of the extended metric space (GI , dFG) are in one-to-one correspondence with166

the homeomorphism classes of graphs.167

Proof. Let G an abstract graph and let G0 = (G,φ0),G1 = (G,φ1) ∈ GI . As is rigorously168

described for graphs in Theorem 11, construct a continuous path Γ : [0, 1] → GI such169

that Γ(0) = G0 and Γ(1) = G1 by interpolating along the pointwise matchings defining170

dFG(G0,G1). (Which is to say, interpolate along the linear combinations of G0 and G1171

as defined in Definition 10.) However, as in Theorem 2, there may exist t ∈ [0, 1] where a172

self-crossing event could occur. Again, we must ensure that such an event does not result173

in any edge degeneracies, which would imply Γ(t) = Gt 6∈ GI(G). At this juncture, there174

must exist t− ε for sufficiently small ε > 0 where Gt−ε is near enough to the crossing event175

at Gt not to create any new crossings when conducting the inflation and self-crossing steps176

described in Theorem 2 and depicted in Figure 2c and Figure 2d.177

Denote the images of the edge e ∈ E ⊂ G and its two corresponding vertices to be178

e0 = (e, φ0) ⊆ G0, e1 = (e, φ1) ⊆ G1, and et−ε = (e, φt−ε) ⊆ Gt−ε = Γ(t− ε). Suppose the179

crossing event were to occur due to the interpolation along et = (e, φt). As in Theorem 2,180

we denote the exact point corresponding to the crossing event in et as φt(t∗) for t∗ ∈ [0, 1],181

where ||φt−ε(t∗)− φt(t∗)||inf = δ for δ > 0. Then, we suspend all interpolation at time t− ε,182

and inflate a small region of the image of φt−ε to share equivalent pointwise leash-length183

distances to φt−ε(t∗), where this neighborhood is defined by φt−ε|(t∗−δ∗,t∗+δ∗) for δ∗ > 0 and184

(t∗−δ∗, t∗+δ∗) ⊂ [0, 1]. Here, we define δ∗ to be small enough again not to cause any additional185

crossing events. That is, if x ∈ φt−ε|(t∗−δ∗,t∗+δ∗), then dFG(x, e1) = dFG(φt−ε(t∗), e1). This186

is done, analogously to the procedure shown Figure 2c, in order to avoid strictly increasing187

the Fréchet distance when constructing a path in the space (GE(G), dFG).188

Finally, directly perturb φt−ε|(t∗) by 2δ so that the edge crossing event occurs, as189

in Figure 2d, and φt(t∗) lies distance δ on the other side of the original edge crossing190

point if interpolation would’ve been followed. Following this crossing event, continue linear191

interpolation as prescribed in Definition 10, handling subsequent crossing events in the same192

manner. After all crossings have occured, linear interpolation will attain G1. Hence, the193

space (GI(G), dFG) is path-connected.194

J195

D Spaces of Embeddings in Rd
196

The ideas presented in Theorem 3 and Theorem 4 are sufficient to demonstrate the path-197

connectedness property in each corresponding topological space. In this section, we make198
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rigorous the proof sketch in Theorem 3 and further elaborate upon the proof sketch in199

Theorem 4, in order to formalize each proof.200

I Theorem 14 (Path-Connectivity of the Space of Paths Embedded in Rd). The space of201

curves embedded in Rd under the Fréchet distance, (ΠC , dFP ), is path-connected.202

Proof. Without loss of generality, we need to construct a continuous Γ : I → ΠE in the203

extended metric space (ΠE , dFG) such that Γ(0) = φ0 and Γ(1) = φ1. To begin, define204

Γ0 : I → ΠE , and Γ1 : I → ΠE , by restricting the domains of φ0, and φ1, thereby condensing205

each curve toward its center:206

Γ0
s(t) := φ0|[s/2,1−s/2](t)

Γ1
s(t) := φ1|[s/2,1−s/2](t)

Then, as t→ 1, the images of φ0 and φ1 encompass an increasingly smaller, and therefore207

straighter curve in the embedding space. As a consequence of Taylor’s theorem, both images208

must attain some juncture at time t∗0 and t∗1 where φ0|(t∗0/2,1−t∗0/2) and φ1|(t∗1/2,1−t∗1/2) can be209

continuously straightened in ΠE toward the line tangent to the center of each curve. From210

there, a standard interpolation between straight segments may be used to transform the211

remaining image of φ0 to φ1. Consequently, we obtain the desired Γ by the composition of212

the condensing maps Γ0
s and Γ1

s(t), and the straightening and linear interpolation steps once213

each condensing map has attained the restriction φ0|(t∗0/2,1−t∗0/2) and φ1|(t∗1/2,1−t∗1/2).214

Note that the requirement in Section 2 that φ0 and φ1 are rectifiable is crucial for the215

above construction. Were this not the case, there would be no guarantee that one could216

condense the images of φ0 and φ1 to become "straight enough" in order to continuously217

achieve a straight segment in the space ΠE .218

J219

I Theorem 15 (Path-Connectivity of the Space of Graphs Embedded in Low Dimensions). In220

general, the topological space (GE(G), dFG) is not path-connected for any arbitrary abstract221

graph G, if G is embedded in Rd with d ≤ 3.222

Proof. If embeddings in Rd are restricted to d ≤ 3, then as a consequence of knot theory,223

(GE(G), dFG) is not path-connected for any abstract graph G.224

If d = 2, let G denote an abstract graph consisting of only a cycle comprising two vertices,225

and a single dangling edge. Let G0 = (G,φ0) ∈ GE comprise a closed curve with an interior226

edge, and let G1 = (G,φ1) ∈ GE comprise a closed curve with an exterior edge in Rd. By227

the Jordan curve theorem, there does not exist a continuous path in Rd from G0 to G1 that228

does not create a degeneracy. Then, constructing a path from G0 to G1 must reach some229

juncture where an immersed graph in Rd, denoted G∗ = (G,φ∗0), is not homeomorphic to G.230

Therefore, G∗ violates the definition of a graph embedding, and the space (GE , dGF ) is not231

path-connected among homeomorphism classes of graphs in dimension 2.232

If d = 3, let G consist of a single cycle, and G0 = (G,φ0) ∈ GE = S1 and G1 = (G,φ1) ∈233

GE comprise a trefoil knot. Then, again due to the Jordan curve theorem and elementary234

knot theory, there exists no continuous path from G0 to G1 in the space (GE(G), dFG).235

J236

I Theorem 16 (Path-Connectivity of the Space of Graphs Embedded in Higher Dimensions).237

In general, the topological space (GE(G), dFG) is path-connected for any arbitrary abstract238

graph G, if G is embedded in Rd with d ≥ 4. Moreover, the connected components of the239

CVIT 2016
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extended metric space (GI , dFG) are in one-to-one correspondence with the homeomorphism240

classes of graphs.241

Proof. Let G and abstract graph, and G0 = (G,φ0),G1 = (G,φ1) ∈ GE . In dimension 4 or242

higher, it is well known that any tame knot can be unwound by a sequence of Reidemeister243

moves into the unknot. Then, one may interpolate along the pointwise matchings (leashes)244

defining dFG(G0,G1) until a crossing event must occur. At this juncture, there must exist a245

Reidemeister move allowing the crossing event to occur. Hence, any sequence of knots and246

dangling edges comprising the image of φ0 can be unwound to a sequence of unknots and247

straight edges. The same holds for the image of φ1. Consequently there exists a continuous248

path from G0 to G1 in the topological space GE(G, dFG). Note that we require that φ0, φ1249

are rectifiable in Section 2, which validates the above argument. Without this requirement,250

G0 and G1 could comprise wild knots, and constructing such a path could consist of infinitely251

many Reidemeister moves. J252
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