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Computing Teichmüller Shape Space
Miao Jin, Wei Zeng, Feng Luo, and Xianfeng Gu, Member, IEEE

Abstract—Shape indexing, classification, and retrieval are fundamental problems in computer graphics. This work introduces a novel

method for surface indexing and classification based on Teichmüller theory. Two surfaces are conformal equivalent, if there exists a
bijective angle-preserving map between them. The Teichmüller space for surfaces with the same topology is a finite dimensional

manifold, where each point represents a conformal equivalence class, and the conformal map is homotopic to Identity. A curve in the

Teichmüller space represents a deformation process from one class to the other. In this work, we apply Teichmüller space coordinates as
shape descriptors, which are succinct, discriminating and intrinsic, invariant under the rigid motions and scalings, and insensitive to

resolutions. Furthermore, the method has solid theoretic foundation, and the computation of Teichmüller coordinates is practical, stable,
and efficient. The algorithms for the Teichmüller coordinates of surfaces with positive or zero Euler numbers have been studied before.

This work focuses on the surfaces with negative Euler numbers, which have a unique conformal Riemannian metric with !1 Gaussian
curvature. The coordinates that we will compute are the lengths of a special set of geodesics under this special metric. The metric can be

obtained by the curvature flow algorithm, the geodesics can be calculated using algebraic topological method. We tested our method
extensively for indexing and comparison of about 100 of surfaces with various topologies, geometries, and resolutions. The experimental

results show the efficacy and efficiency of the length coordinate of the Teichmüller space.

Index Terms—Surface classification, surface comparison, shape retrieval, Teichmüller space, hyperbolic structure, Fuchsian group,

Ricci flow, Riemann uniformization.

Ç

1 INTRODUCTION

1.1 Motivation

EFFECTIVE index and classification for shapes are very
demanding with the dramatically increasing of 3D

geometric models in online repositories, while also challen-
ging. For a geometric algorithm, all the information that can
be utilized is only the topology and geometry of the shape.
But, for human beings, shape classification and comparison
involves the expectations of the functionalities of the objects.
For example, for a human observer, the slatted chairs can
still be quite similar even if they have a different number of
slats; but for a computer, the objects are quite different
because they have different topologies. Low-level algo-
rithms based on the geometric information need to be
developed first to lay down the foundation for high-level
methods, which are closer to the human intelligence. The
algorithms in both levels have fundamental importance.
This work focuses on the algorithms solely based on the
geometric information.

Shape descriptors can be constructed using different
levels of geometric information. For example, surfaces can
be classified by their topological properties, such as the

number of the handles and the boundaries. Shapes can be
differentiated more precisely by differential geometric
properties, such as principle curvatures and fundamental
forms. Topological descriptors are global, succinct and
intuitive, but less discriminating; whereas differential geo-
metric descriptors are local, redundant, but much more
discriminating. The huge storage requirements prevent
differential geometric descriptors from practical applica-
tions. This work introduces a novel approach for shape
indexing and classification, with descriptors based on
conformal geometry. In practice, it is hard to find two
different types of shapes with handles sharing the same
conformal descriptors, so descriptors based on conformal
geometry are discriminating enough. What is more, con-
formal shape descriptors are intrinsic, independent of
rotation, translation, and scaling, and are also invariant to
tessellation and isometric deformation. They are stable for
deformations with small area stretching, like the posture
change of a human skin surface, which changes slightly. They
are efficient, easy to compute and compare. Therefore, we
believe conformal geometric approach for shape classifica-
tion and comparison has the potential for real applications.

1.2 Conformal Equivalence

A conformal map, also called an angle-preserving map, preserves
local angles between two surfaces. While given two arbitrary
surfaces with same topology, there may not exist conformal
map between them, which is demonstrated as the angle
distorted texture transferring from kitten model to rocker-
arm model in Fig. 1 based on a map between them. They both
are genus one surfaces, while no conformal map between
them. For surfaces with the same topology, we say they are
conformally equivalent or belong to the same conformal class if
there exists a bijective conformal map between them. There-
fore, surfaces can be easily differentiated by conformal
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equivalence. All conformal classes form a space called
Teichmüller space, which can be modeled as a finite
dimensional manifold. Each surface has a unique coordinate
in the space, and the dimension of the coordinates is
determined by the topology of the surface. Two surfaces
share the same coordinates in Teichmüller space if and only if
they belong to the same conformal class.

An intuitive example is given by two planar annuli: we
can scale them such that both of their outer radii are 1, while
the inner radii are r1 and r2, respectively. There is no
conformal map between them as long as r1 6¼ r2. Therefore,
the dimension of the conformal descriptors for all planar
annuli is one, and the value is the inner radius after
normalization. Another example is given by human faces
with three boundaries in Figs. 2a, 2b, and 2c. Their
conformal descriptors are the geodesic lengths of their
boundaries under hyperbolic uniformization metric, after
we conformally map each face to two congruent right-
angled hyperbolic polygons in Poincaré disk as shown in

Figs. 2d, 2e, and 2f. The dimension of their coordinates in
Teichmüller space is three, the number of boundaries. Since
those edge lengths are not equal, they do not belong to the
same conformal class.

Conformal descriptors are invariant under conformal
deformations, which include isometric deformations, rigid
motions, and scaling. Fig. 3 gives an example of a toy face
(with different viewpoints in Figs. 3a and 3b) and its
conformal descriptors (visualized as the three inner circles
radii in Fig. 3c). After isometric deformation of the toy face
(with different viewpoints in Figs. 3d and 3e), the values of
its conformal descriptors (visualized as the three inner
circles radii in Fig. 3f) do not change, which can be verified
by the comparison of the three circles radii (between Figs. 3c
and 3f), and the difference error is under 0.0177.

This work proposes to classify surfaces based on
Teichmüller space theory. In this work, we only consider
oriented surfaces. We use ðg; rÞ to represent the topological
type of the surface, where g means the number of handles
(genus), r the number of boundaries. After fixing the topology
of the surfaces, all conformally equivalent classes form a finite
dimensional manifold, the so-called Teichmüller space [12],
where each point represents conformal equivalence class,
and the conformal map is homotopic to Identity. A curve
connecting different points represents a deformation process
from one class to the other. The dimension of the Teichmüller
space of negative Euler number surfaces with topological
type ðg > 1; rÞ is 6g! 5þ 3r. Fig. 4 illustrates the concept. The
teapot surface has one handle and one boundary at the spout;
therefore, it is of topological type (1, 1), with three dimensions
in Teichmüller space. The teapot in the middle is twisted with
the deformation process indicated by the blue curve. The
more the curve changes, the greater the distortion is. Another
deformation process is depicted by the red curve where the
teapot is scaled vertically. The two deformation paths are
illustrated in both IR3 and the Teichmüller space.
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Fig. 1. A map between genus one (a) kitten model and (b) rocker-arm
model, where the right corner angles on the kitten surface are distorted
on the rocker-arm surface, which demonstrates that the map is not
conformal.

Fig. 2. Three human faces sharing the same topology (two holes
annulus) are not conformally equivalent, which is verified by conformally
mapping them to hyperbolic space and comparing their conformal
descriptors: the edge lengths of the hyperbolic hexagon under
hyperbolic uniformization metric.

Fig. 3. Conformal descriptors are invariant under isometric deforma-
tions. The first row shows two views of the original surface and its
conformal image. The second row shows two views of the deformed
surface and its conformal image. Their conformal descriptors are
visualized as the inner circles radii. Under isometric deformation, their
conformal images are identical, which means their conformal descriptors
are the same.
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We briefly summarize the Teichmüller spaces for
surfaces with different Euler numbers. The Euler number
of type ðg; rÞ is 2! 2g! r. The computational algorithms for
the Teichmüller coordinates of surfaces with nonnegative
Euler numbers have been introduced before. This work
focuses on surfaces with negative Euler numbers:

. The Teichmüller space for (0, 0) type surfaces,
namely genus zero closed surfaces, has only one
point. That means that all genus zero closed surfaces
are conformally equivalent. In this case, we con-
formally map the surface to the unit sphere. By
mapping different surfaces to the unit sphere, we
can easily construct the conformal mapping between
the two surfaces. The area distortion induced by the
conformal mapping is called the conformal factor.
In [4], we proved that the conformal factor and the
mean curvature determine the surface uniquely up
to a rigid rotation of the sphere. We use area
distortion and mean curvature as shape descriptors
for shape comparison purposes in [4].

. The Teichmüller space for (0, 1) type surfaces, namely
genus zero surface with a single boundary, consists of
a single point. All such surfaces can be mapped to the
unit disk. Similarly, the conformal factor and mean
curvature can be applied as shape descriptors.

. The Teichmüller space for (1, 0) type surfaces,
namely tori, is 2D. The Teichmüller coordinates of
a torus can be computed using global surface
conformal parameterization method [3]. Basically,
we can compute a holomorphic 1-form. By integrat-
ing the 1-form, we can map the universal covering
space of the surface to the plane IR2. Each funda-
mental domain is mapped to a parallelogram. The
Teichmüller coordinates of the torus are the angle
and the length ratio between two adjacent edges of
the parallelogram. We refer readers to [3] for details.

. For all the other surfaces, the Euler numbers are
negative. The coordinates in Teichmüller space can be

computed in the following method. First, there exists a
unique Riemannian metric, called the hyperbolic
uniformization metric, which is conformal to the
original metric of the surface and induces!1 constant
Gaussian curvature everywhere. Furthermore, all the
boundaries become geodesics under the uniformiza-
tion metric. Two closed curves are homotopic, if one can
deform to the other without leaving the surface.
Under the hyperbolic uniformization metric, each
homotopy class has a unique geodesic. We choose a
special set of homotopy classes on the surface, then
compute the unique geodesic in each class. The
lengths of these geodesics are Luo’s coordinates [9],
which form the length coordinates of the surface in
Teichmüller space. This work focuses on the compu-
tation of the length coordinates of surfaces with
negative Euler numbers.

The major goal of this paper is to develop rigorous and
practical algorithms to compute length coordinates of
surfaces with negative Euler numbers in Teichmüller space.
The major contributions of this work are as follows:

1. It proposes a theoretical framework to model all
negative Euler number surfaces in a shape space,
Teichmüller space. The framework has deep roots in
modern geometry and is practical for computation.
It offers novel views and tools for tackling engineer-
ing problems.

2. It introduces a series of practical algorithms for
computing length coordinates of negative Euler
number surfaces in Teichmüller space. Those co-
ordinates are with finite dimension, independent of
scaling and rigid motion, and are also invariant to
different tessellations. They can be applied for shape
indexing to classify surfaces according to their
conformal class.

The remainder of this paper is organized as follows:
Section 2 contains a summary of related work, and the
challenges in this area. Section 3 briefly introduces the
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Fig. 4. The teapot surface with one handle and one boundary at the spout as shown in (a) has three dimensions in Teichmüller space, where each
point represents one conformal equivalent class, and a curve connecting different points represents a deformation process from one class to the
other as shown in (b). (a) Teapots deformed in euclidean space. (b) Deformation paths in Teichmüller space.
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theoretical background of Teichmüller space. Section 4
describes our algorithms for computing the coordinates
for general surfaces with negative Euler numbers in
Teichmüller space. Section 5 presents results of our
experiments on surface indexing and shape comparison,
which evaluate the robustness, discriminability, and effi-
ciency of our algorithms. We summarize this paper and
point out future directions in Section 6.

2 RELATED WORK

Our work proposes to compute Teichmüller space coordi-
nates as shape descriptors based on surface hyperbolic
uniformization metric, which classify surfaces according to
their conformal structures. Surfaces having the same
descriptors share the same conformal structure, invariant
to conformal deformations.

The research literature on shape descriptors is vast. A
thorough review of shape descriptors is beyond the scope of
the current work. We will focus here only on recent shape
descriptors which are most relevant to our work using
conformal geometry, and methods for designing metrics by
prescribed curvatures.

2.1 Shape Descriptors

For the application of 3D shape classification and matching,
shape descriptors are to extract meaningful and simplified
representations from the 3D model based on the geometric
and topological characteristics of the object. As the name
suggests, shape descriptors should be descriptive enough to
be able to discriminate similar and dissimilar shapes. The
interested reader is referred to [28], [17], and [15] for
comprehensive surveys of different shape descriptors and
evaluations of their performance.

Shape descriptors can be classified by the corresponding
transformation groups, to which they are invariant. The
following transformation groups are considered: rigid
motion, isometric transformation, and conformal deformation.
The former groups are the subgroups of the latter ones. In
the discussion, we focus on shape descriptors based on
conformal geometry. There are many other shape descrip-
tors invariant to the above transformation groups based on
other methods. We only brief some of them.

2.1.1 Shape Descriptors Invariant to Conformal
Deformations

Conformal structure is invariant to conformal deformations,
which include isometric deformations and rigid motions. To
the best of our knowledge, the first work proposed to use
conformal structure for shape classification is [8], where the
conformal structure is represented as period matrices.
Later, geodesic spectra of surfaces under their uniformiza-
tion metrics are applied as the conformal structure
descriptors in [7], which can be computed symbolically. A
general framework for 3D surface matching is proposed in
[6] and [18]. By conformally parameterizing the 3D surfaces
to canonical 2D domains, the matching problem is greatly
simplified. If the surfaces are conformally equivalent, then
2D mapping is an identity with appropriate boundary
conditions.

2.1.2 Shape Descriptors Invariant to Isometric
Transformations

Pose changes are a quasi-isometric transformation of the
3D mesh, in the sense that edge lengths do not change much
as a result of the transformation. Pose-invariant shape
descriptors are invariant under nonrigid isometric transfor-
mations, and tolerant quasi-isometric transformations.
Pose-invariant shape descriptors based on conformal
geometry are introduced in [23], where the histogram of
the conformal factor computed from surface uniformization
metric is applied as shape descriptor. This descriptor is
intrinsic and pose-invariant.

Laplace-Beltrami operator is determined by the Rieman-
nian metric. Therefore, most descriptors related to discrete
Laplace-Beltrami operators are also invariant to isometric
deformations, and tolerant quasi-isometric deformations.
For examples, Reuter et al. in [20] use the eigenvalues of
Laplace-Beltrami operator, Rustamov in [19] uses the
eigenvectors, and Xiang et al. in [21] use the histogram of
the solution to the volumetric Poisson equation which
involves the Laplace-Beltrami operator.

2.1.3 Shape Descriptors Invariant to Rigid Motions

Shape descriptors invariant to rigid motions and based on
conformal geometry are used in [4] and [5] for medical
application purpose, where both conformal factor and mean
curvature are considered. Conformal factor itself fully
determines the Riemannian metric of surfaces. After adding
mean curvature, the two can determine the embedding of
surfaces unique up to rigid motions with appropriate
boundary conditions.

2.1.4 Other Shape Descriptors

There are many other shape descriptors invariant to
isometric deformations based on Riemannian geometry.
For example, those methods in [22], [25], and [26] compute
from surface geodesic distances. The method in [27]
computes the diameter of the 3D shape at each point, and
the average geodesic distance from each point to all other
points. The histograms of the two functions are applied as
the shape descriptors.

Many global or local features based, or graph-based
shape descriptors are invariant to rigid motions, while extra
algorithms for feature and graph matching are necessary.
We refer readers to [15] for more details.

2.2 Computing Metric from Prescribed Curvature

There are many algorithms for conformal surface parameter-
ization in the literature. Comprehensive reviews can be found
in [51] and [52]. Here, we focus on approaches to compute
conformal metrics from prescribed curvatures.

Hamilton introduced Ricci flow for general Riemannian
manifold in [29]. Later, Hamilton introduced surface Ricci
flow in [10]. Perelman applied Ricci flow for the proof of
Poincaré conjecture and Thurston’s geometrization conjec-
ture in [37], [38], and [39]. A thorough introduction to Ricci
flow can be found in [30] and [31].

A circle packing algorithm was introduced by Thurston
in [1]. Bowers and Hurdal [49] and Stephenson [24]
improved the algorithm and built the software system.
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Chow and Luo discovered the intrinsic relation between
Ricci flow and circle packing and laid down the theoretic
foundation for discrete Ricci flow in [11], where the
existence and convergence of the discrete Ricci flow were
established. The variational approach to find constant
curvature metrics on triangulated surfaces was pioneered
in [32], [33], and [34]. More recently, it appears in [41], [40],
and [35]. Combinatorial Yamabe flow is introduced in [36].

The algorithm of discrete surface Ricci flow was given in
[42], where the Ricci flows on meshes with spherical,
euclidean, and hyperbolic background geometries are
explained in details. Furthermore, Newton’s method is
directly applied to optimize the discrete Ricci energy.
Optimal surface parameterization is formulated as a
variational problem with respect to the target boundary
curvatures in [45], and solved by constrained optimization
algorithm.

Circle pattern method was proposed by Bobenko et al. in
[46] and [47], which used the notion of angle structures first
introduced by de Verdiére [48]. Based on [46], circle pattern
algorithm was introduced in [43].

Metric scaling method is introduced in [44], which
solved the discretized Poisson equation with the cot-
Laplace operator induced by the original metric, then use
harmonic maps to compute the embedding from the result
metric. The method is linear and efficient.

Similar to the formulation of combinatorial Yamabe flow
introduced in [35], Springborn et al. [50] compute conformal
equivalent metrics according to prescribed curvatures. The
Yamabe energy in [35] is represented as an integration of a
differential form, and formulated to an explicit form using
Milnor’s Lobachevsky function in [50]. The explicit for-
mulas of the Hessian matrix in [35] and [50] are equivalent,
which is the cot-Laplace operator.

3 TEICHMÜLLER SPACE THEORY

In this section, we briefly introduce the theoretical back-
ground of Teichmüller space theory, and the most directly
related background knowledge in topology and hyperbolic
geometry. For details, we refer readers to [14] for informa-
tion on Algebraic topology, [13] for hyperbolic geometry,
and [12] for Teichmüller space theory.

3.1 Topological Background

Let ! be a surface, the closed curves in the surface are
homotopic to each other if they can be deformed to each
other without leaving the surface. Closed curves are
classified by this homotopic relation. The homotopy classes
with the same base point form a group, which is called the
fundamental group. Suppose ! is of genus g, then there
exists a set of canonical fundamental group generators
fa1; b1; a2; b2; . . . ; ag; bgg, such that on each handle, there are
two loops ai, bi. One loop ai circles the hole and the other
loop bi loops around the tube. Fig. 6a shows a set of
canonical fundamental group generators of a genus two
surface.

Suppose "! is another surface, then ð"!;!Þ is said to be a
covering space of ! if locally, ! is a homeomorphism. If "! is
simply connected, then ð"!;!Þ is the universal covering
space of !.

For surface with negative Euler number, its universal
covering space "! is the hyperbolic space IH2, which will be
introduced in Section 3.3. Its Fuchsian transformations, the
transformations of the universal covering space to itself,
" : "!! "!, are hyperbolic rigid motions (Möbius transfor-
mations). Each Fuchsian transformation associates a homo-
topy class in the fundamental group in the following
manner: giving a point p on ! and "p0, "p1 2 !!1ðpÞ on the
universal covering space "!. If " is a Fuchsian transforma-
tion, such that "ð"p0Þ ¼ "p1, then any path "# & "! connecting
"p0 and "p1 will be projected to a closed curve # ¼ !ð"#Þ. Then,
we associate " with the homotopy class of #. Therefore, the
Fuchsian transformation group is isotopic to the funda-
mental group of the surface.

3.2 Hyperbolic Uniformization Metric

A surface ! in IR3 has an induced euclidean metric, denoted
as g. Suppose u is a function defined on !, u : !! IR, then
e2ug is another metric conformal to the original one. If ! has
a negative Euler number, then it has a unique metric
"g ¼ e2"ug, which is conformal to g and induces !1 Gaussian
curvature at all interior points and 0 geodesic curvature at
boundary points. The metric "g is called the hyperbolic
uniformization metric of !.

In order to compute the hyperbolic uniformization
metric, we need to find the function "u : !! IR, which can
be solved using Ricci flow method:

duðtÞ
dt
¼ !2KðtÞ; uð0Þ ¼ 0;

where KðtÞ is induced by the metric of e2uðtÞg. It has been
proven that Ricci flow will converge uð0Þ ¼ 0 to uð1Þ ¼ "u
which induces the hyperbolic uniformization metric [10].

3.3 Hyperbolic Geometry

If ! has a negative Euler number, then with uniformization
metric, the universal covering space "! can be isometrically
embedded in the hyperbolic space IH2.

There are two commonly used models for hyperbolic

space, the Poincaré disk and the upper half plane model. The

Poincaré disk is the unit disk in the complex plane, jzj < 1,

with Riemannian metric ds2 ¼ dzd"z
ð1!z"zÞ2 . The rigid motions are

the so-called Möbius transformations with the form

w ¼ ei$ z!z0
1!"z0z

. The hyperbolic lines are circular arcs perpen-

dicular to the unit circle. The second model is the upper half

plane model y > 0 with the metric ds2 ¼ dzd"z
y2 . The Möbius

motions are of the form

w ¼ azþ b
czþ d

; a; b; c; d 2 IR; ad! bc ¼ 1:

A Möbius transformation in the upper half plane model is
represented by its coefficient matrix. The coefficient matrix
of the product of two Möbius transformations is equal to the
product of their coefficient matrices.

The conformal transformation that maps the upper half
plane to the Poincaré disk is T ¼ i!z

iþz . Any Möbius
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transformation on the Poincaré disk " can be converted to a
Möbius transformation on the upper half plane as

T!1 ' " ' T: ð1Þ

The deck transformations of "! on the hyperbolic disk are
Möbius transformations, which form the Fuchsian group of
!. Corresponding to the canonical fundamental group
generators fa1; b1; a2; b2; . . . ; ag; bgg, the canonical Fuchsian
group generators are referred as f%1;&1;%2;&2; ( ( ( ;%g;&gg.
Suppose a loop has homotopy class aibj, then its corre-
sponding Fuchsian transformation is %i ' &j.

Suppose # is a closed curve on a surface ! with the
hyperbolic uniformization metric, then there is a unique
geodesic ~# homotopic to #. Also, there is a unique Fuchsian
transformation " associated with the homotopy class of #.
The length of ~#, lð~#Þ, satisfies the following equation:

traceð"Þj j ¼ 2 cosh
lð~#Þ

2

! "
:

In our implementation, we use this relation to compute the
lengths of geodesics which are homotopic to a set of special
closed loops on surfaces.

3.4 Teichmüller Space Coordinates

There are several coordinates defined in Teichmüller space.
Here, we adopt Luo’s coordinates in [9] to avoid compli-
cated computation of the twisting angles of Fenchel-Nielsen
coordinates in [12].

In the following discussion, we use !g;r to represent a
surface ! with topological type ðg; rÞ, where g represents the
genus, r means the number of boundaries.

Given a surface !g;r with negative Euler number, we can
decompose the surface into three types of building blocks, as
shown in Figs. 5a, 5b, and 5c. The procedure to build ! from
the building blocks is illustrated in Fig. 5d. We use I

T
II to

denote the process of gluing the block I to the block II. The
gluing does not mean combining two blocks along their
corresponding boundary curves, but by merging their over-
lapping regions. For example, in the first gluing step in the
figure, the overlapping region of I and II is a two-holed
annulus. From left to right, we use basic building blocks I and
II so that I

T
II is homeomorphic to !1;2, a genus one surface

with two boundaries; smoothly joining building block III, so
that !1;2

T
III is homeomorphic to !2;1, a genus two surface

with one boundary; then joining building block II, so that
!2;1

T
II is homeomorphic to !2;2, a genus two surface with
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Fig. 5. (a) Building block I. (b) Building block II. (c) Building block III. For all of the three basic building blocks, the lengths of geodesic homotopic to
the labeled curves determine the building block’s metric. (d) Using building blocks I, II, and III to build all surfaces: from left to right, using building
blocks I and II to build genus one surface with two boundaries. Then, adding building block III to build genus two surface with one boundary. Then,
adding building block II to build genus two surface with two boundaries. Repeating to get all surfaces. Note that marked curves on surface indicate
the boundaries of overlapping part where two building blocks are glued together, and red and blue colors are used to distinguish boundaries coming
from different building blocks. (e) The construction of genus two surface. (f) The geodesic lengths of the set of color labeled curves determine the
metric of a genus two surface. Blue curves and green curves come from the first and the second building blocks with type I; red curves come from
building block with type II. Note that two of the curves for building block with type II and one for the second building block with type I are redundant
and have been canceled off.
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two boundaries; repeating this procedure, we can generate all
types of surfaces with negative Euler surfaces. By this
construction, a simple method is provided to define Luo’s
coordinates in Teichmüller space for general surfaces.

For each building block, its conformal structure is
determined by the lengths of geodesic homotopic to those
red loops under the hyperbolic uniformization metric.

Although on general surfaces, in each homotopy class,
there may be multiple geodesics, which are the locally
shortest curves on surfaces. For surfaces with hyperbolic
uniformization metric, the geodesic is unique in each
homotopy class, which can be proved by Gauss-Bonnet
theorem. We refer readers to [2] for details.

When two building blocks are glued together to form a
new surface, nonhomotopic loops on the original blocks
may become homotopic on the resulting surface. After
canceling off the redundant loops, the lengths of geodesic
homotopic to remaining loops determine the conformal
structure of the resulting surface, which are the coordinates
of this surface in Teichmüller space. For example, for a
closed genus two surface, constructed from two building
blocks of type I and one building block of type II as shown
in Fig. 5e, its Teichmüller coordinates are the lengths of
geodesic homotopic to those loops marked with different
colors as shown in Fig. 5f. Loops with the same color
indicate that they come from the same building block. In
general, for a surface !g>1;r with a negative Euler number,
their Teichmüller coordinates are determined by the lengths
of 6gþ 3r! 5 closed geodesics.

4 ALGORITHMS TO COMPUTE LENGTH

COORDINATES IN TEICHMÜLLER SPACE

This section explains the algorithms for computing the
Teichmüller space coordinates for surfaces with negative
Euler numbers in details, represented as the lengths of a
special set of geodesics under hyperbolic uniformization
metric. The lengths of those geodesics can be symbolically
computed from Fuchsian transformations, which require
the generators of Fuchsian group, and Fuchsian group
generators are calculated using the system of loops:
canonical fundamental group generators. All of these
computations are based on hyperbolic geometry.

The whole algorithm pipeline is as follows:

1. compute hyperbolic uniformization metric of the
surface, discussed in Section 4.1;

2. compute Fuchsian group generators, discussed in
Section 4.2; and

3. compute the coordinates in Teichmüller space,
discussed in Section 4.3.

Following this pipeline, we discuss each step in detail.

4.1 Step 1. Compute Hyperbolic Uniformization
Metric

In engineering fields, smooth surfaces are often approxi-
mated by discrete surfaces with triangulations. Since
conformal deformation transforms infinitesimal circles to
other infinitesimal circles and preserves the intersection
angles among the circles, we can approximate discrete
conformal deformation using circle packing metric intro-
duced by Thurston in [1] by associating each vertex vi with
a cone of radius #i, each edge with edge weight Phiij which
is the intersection angle of the two cones centered with the
ending vertices vi and vj of that edge eij.

The discrete hyperbolic surface Ricci flow on a discrete
negative Euler number surface with circle packing metric is
a process that the scaling of cone radius of Vertex vi is
proportionally evolving according to the discrete Gaussian
curvature Ki of that vertex:

d#i
dt
¼ !Ki sinh #i; ð2Þ

while the intersection angles #ij are kept unchanged. The
final circle packing metric induces new metric of original
surface approximated by edge lengths, which is conformal
to the original one but induces constantly negative Gaussian
curvature, called hyperbolic uniformization metric. The
discrete hyperbolic Ricci flow will converge exponentially.
We refer the readers to [11] for theoretical proofs for the
convergence of the discrete hyperbolic Ricci flow.

To compute discrete hyperbolic Ricci flow, we need to
set the initial circle packing metric for a given discrete
surface, which approximates its original euclidean metric as
much as possible. Then, we can use gradient descent
method to solve (2). The detailed algorithm can be found in
Appendix Algorithm 1.

We can further improve the convergence speed of
computing discrete hyperbolic Ricci flow with Newton’s
method. Let ui ¼ ln tanh #i

2 , we can define an energy form

fðuÞ ¼
Zu

u0

Xn

i¼1

Kidui;

where u ¼ ðu1; u2; . . . ; unÞ, u0 ¼ ð0; 0; . . . ; 0Þ and @f
@ui
¼ Ki.

Then, the discrete hyperbolic surface Ricci flow in (2) is the
negative gradient flow of this convex energy fðuÞ, and the
solution of an energy optimization problem. So, in practice,
we can use Newton’s method to compute hyperbolic uniform
metric with even faster convergence speed.

4.2 Step 2. Compute Fuchsian Group Generators in
the Poincaré Disk Model

This step aims to compute the canonical Fuchsian group
generators used for computing the geodesic lengths in the
future step. There are several major steps to compute
Fuchsian group generators:

510 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Fig. 6. (a) Vase model with a set of canonical fundamental group
generators marked with red. (b) Fundamental domain of the vase model
embedded in the Poincaré disk with the hyperbolic uniformization metric.
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1. compute fundamental group generators, discussed
in Section 4.2.1;

2. isometric embed the mesh in the Poincaré disk,
discussed in Section 4.2.2; and

3. compute the Fuchsian group generators, discussed
in Section 4.2.3.

4.2.1 Compute Fundamental Group Generators

On a “marked” surface, which means we have enumerated
surface handles with h1, h2, h3, etc., we pick a point on the
surface as the base point (which can be any vertex on the
surface), then for each handle hi, we can uniquely decide a
tunnel loop ai which goes around the circle, a handle loop bi
which goes around the handle, and both of them go through
the base point. In this way, we get a set of canonical
fundamental group generators fa1; b1; a2; b2; . . . ; ag; bgg.
Fig. 6a shows a set of canonical fundamental group
generators marked with different colors on the vase model.
The way to compute the canonical fundamental group
generators has been studied in computational topology and
computer graphics literature. We adopted the methods
introduced in [16]. The surface S is then sliced open along
the fundamental group generators to form a topological
disk D, called fundamental domain. The boundary of D
takes the form @D ¼ a1b1a!1

1 b!1
1 a2b2a!1

2 b!1
2 . . . agbga!1

g b!1
g .

4.2.2 Isometric Embedding in Hyperbolic Disk

Now, we isometrically embed D onto the Poincaré disk
using the uniformization metric computed from the first
step. Let ' : D! IH2 denote the isometric embedding.

First, we select an arbitrary face f012 from D as a starting
face. Suppose the three edge lengths of the face are
fl01; l12; l20g, and the corner angles are f$12

0 ; $
20
1 ; $

01
2 g under

the uniform hyperbolic metric. We can simply embed the
triangle as

'ðv0Þ ¼ 0; 'ðv1Þ ¼
el01 ! 1

el01 þ 1
; 'ðv2Þ ¼

el02 ! 1

el02 þ 1
ei$

12
0 :

Second, we can embed all the faces which share an edge
with the starting face. Suppose a face fijk is adjacent to the
starting face, and vertices vi and vj have been embedded. A
hyperbolic circle is denoted as ðc; rÞ, where c is the center
and r is the radius. Then, 'ðvkÞ should be one of the two
intersection points of ð'ðviÞ; likÞ and ð'ðvjÞ; ljkÞ. Also, the

orientation of 'ðviÞ, 'ðvjÞ, 'ðvkÞ should be counterclockwise.
In the Poincaré model, a hyperbolic circle ðc; rÞ coincides
with a euclidean circle ðC; RÞ:

C ¼ 2! 2(2

1! (2jcj2
c; R2 ¼ jCj2 ! jcj

2 ! (2

1! (2jcj2
;

where ( ¼ er!1
erþ1 . The intersection points between two

hyperbolic circles can be found by intersecting the
corresponding euclidean circles. The orientation of triangles
can also be determined using euclidean geometry on the
Poincaré disk.

Then, we can continue to embed faces which share edges
with embedded faces in the same manner, until we embed
the whole D onto the Poincaré disk.

Fig. 6b shows the embedding of fundamental domain of
the vase model onto the Poincaré disk with its hyperbolic
uniformization metric.

4.2.3 Fuchsian Group Generators

The embedding of a canonical fundamental domain for a
closed genus g surface has 4g different sides, which induce
4g rigid transformations. These 4g rigid motions are the
Fuchsian group generators.

Figs. 6, 7, and 8 illustrate the process to compute
Fuchsian group generators for a mesh with a negative Euler
number. Let fa1; b1; . . . ; ag; bgg be a set of canonical funda-
mental group generators as marked with red in Fig. 6a,
where g is the genus. The embedding of the vase’s canonical
fundamental domain in hyperbolic space has 4g sides,
'ða1Þ; 'ðb1Þ; 'ða!1

1 Þ; 'ðb!1
1 Þ; . . . ; 'ðagÞ; 'ðbgÞ; 'ða!1

g Þ; 'ðb!1
g Þ (see

Fig. 6b in Poincaré disk). There exists unique Möbius
transformations %k, &k, which map the 'ðakÞ and 'ðbkÞ to
'ða!1

k Þ and 'ðb!1
k Þ, respectively. Fig. 7a shows one Fuchsian

group generator acting on one copy of the fundamental
domain of the vase model, which maps the 'ðbkÞ to 'ðb!1

k Þ.
The two red points are the preimages of a same point on the
vase model. Paths connecting them are projected to closed
loops homotopic to the red one on the vase model (see
Fig. 7b). And we will see that the computation of the length
of the geodesic homotopy to the loop in Fig. 7b only involves
the Möbius transformation which maps 'ðbkÞ to 'ðb!1

k Þ. The
Möbius transformations f%1;&1;%2;&2; . . . ;%g;&gg form a set
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Fig. 7. (a) One deck transformation maps the left period to the right one.
(b) Two closed loops homotopic to the red one on the vase model lift as
two blue paths in the universal covering space.

Fig. 8. (a) 2g Fuchsian group generators act on the vase model, which
are rigid motions in the hyperbolic space. Different color indicates
different periods (fundamental domains). The generators map the
central period to the colored ones, respectively. (b) A finite portion of
the universal covering space of the vase model generated by the actions
of Fuchsian group elements with boundaries marked with geodesics in
hyperbolic space.
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of generators of Fuchsian group. Fig. 8a shows eight copies
of the fundamental domain of the vase model tessellated
coherently along boundaries by a set of Fuchsian group
generators, and Fig. 8b shows more copies tessellated by
Fuchsian transformations.

The following explains the details for computing &1. Let
the starting and ending vertices of the two sides be @'ðb1Þ ¼
q0 ! p0 and @'ðb!1

1 Þ ¼ p1 ! q1. Then, the geodesic distance
from p0 to q0 equals to the geodesic distance from p1 to q1 in
the Poincaré disk. To align them, we first construct a
Möbius transformation '0, which maps p0 to the origin, and
q0 to a positive real number, with

'0 ¼ e!i$0
z! p0

1! "p0z
; $0 ¼ arg

q0 ! p0

1! "p0q0
:

Similarly, we can construct another Möbius transformation
'1, which maps p1 to the origin, and q1 to a real number,
with '1ðq1Þ equals to '0ðq0Þ. By composing the two, we
get the final Möbius transformation &1 ¼ '!1

1 ' '0, which
satisfies p1 ¼ &1ðp0Þ and q1 ¼ &1ðq0Þ, and aligns the two
sides together.

Then, we convert the Fuchsian group generators from
the Poincaré disk model to the upper half plane model
using formula 1.

4.3 Compute Teichmüller Coordinates

Teichmüller coordinates are obtained by measuring the
lengths of geodesic homotopic to a group of loops on
surfaces under hyperbolic uniformization metric, and the
geodesics are unique in each homotopy class since Gauss
curvature is constantly negative everywhere. The major
steps are as follows:

1. Decompose the surface to building blocks.
2. Determine the homotopy classes of the geodesics.
3. Compute the lengths of the geodesics in each

homotopy class.

Surface with enumerated handles has fixed decomposi-
tion to building blocks with one handle by one handle as
illustrated inversely in Fig. 4d since the decomposition is
purely based on topology. After redundant loops with the
same homotopic class while belonging to different building
blocks have been removed, our goal is to compute the
lengths of geodesic homotopic to the remaining loops. For
example, for a genus two surface, the remaining loops can
be seen in Fig. 5f.

Since in the above steps, the canonical homology basis
fa1; b1; a2; b2; . . . ; ag; bgg and the corresponding Fuchsian
group generator f%1;&1;%2;&2; . . . ;%g;&gg have been calcu-
lated already. To compute the length of geodesic homotopic
to a loop # on surface, we first use the algorithm in [14] to
determine its homotopy class, which can be symbolically
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Fig. 9. Performance of curvature flow to compute hyperbolic uniformiza-
tion metric for closed genus two amphora model with 20k faces. The
horizontal axis represents time, and the vertical axis represents the
maximal curvature error. The blue curves are for the Newton’s method;
the green curves are for the gradient descent method. The tests were
carried out on a laptop with 1.7-GHz CPU and 1-Gbyte RAM. All the
algorithms are written in C++ on a Windows platform without using any
other numerical library.

Fig. 10. Same model with different triangulation density: 5k, 10k, 20k,
and 40k. Comparison of Teichmüller space coordinates with different
densities is listed in Table 1.

TABLE 1
Comparison of Coordinates of Vase

Model with Different Densities

The dimension of Teichmüller space coordinates for closed genus two
surfaces is seven.

Fig. 11. The dimension of Teichmüller space coordinates for closed
genus two surfaces is seven. Here, we visualize the Teichmüller space
coordinates for teapots listed in Table 3.

Authorized licensed use limited to: Montana State University Library. Downloaded on April 10,2022 at 23:31:00 UTC from IEEE Xplore.  Restrictions apply. 



represented, for example: # ¼ a1b1a!1
1 b!1

1 . Then, by mapping

each ai to %i and bj to &j, we get its representation using

corresponding Fuchsian transformations, still the previous

example: "# ¼ %1&1%!1
1 &!1

1 . Let the length of # denoted as l# ,

and we use the matrix representation of "# on the upper half

plane. l# can be easily computed from the following relation:

jtrð"#Þj ¼ 2 coshðl#2Þ.

5 IMPLEMENTATION AND RESULTS

We have implemented the algorithms for computing the
Teichmüller coordinates using C++ on the Windows plat-
form. We verify our method by computing the shape

coordinates on a large number of surface models with
various topologies. The triangles count for the model
ranging from thousands to tens of thousands. Due to the
page limit, we only list part of our experimental results.
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TABLE 2
Distances between Genus Two Surfaces in Teichmüller Space
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5.1 Time Complexity

In the whole algorithm pipeline, the most time consuming
is computing the hyperbolic uniformization metric. Fig. 9
shows the statistics for the computation of hyperbolic
uniformization metric for a closed genus two amphora
model with 20k faces. The x-axis indicates the time, and
the y-axis indicates the maximal curvature error. The green
curve shows the steepest descendant method, and the blue
curves show the Newton’s method. For most models listed
in the work, the time to compute their hyperbolic
uniformization metrics is less than 1 minute.

5.2 Robustness

Teichmüller space coordinates are intrinsic properties of
surfaces, independent of translation, rotation, scaling, and
also insensitive to local noises, and the resolutions of the
surface. We tested the robustness of our algorithm by
computing for a model with different resolutions. Fig. 10
illustrates one such example. The vase model is tessellated
using different resolutions, with the number of faces 5k, 10k,

20k, and 40k, respectively. We tested our Teichmüller

coordinates algorithm on them. The results are listed in

Table 1, including the mean average and standard deviation.

As we can see, the relative error is less than 0.3 percent.

5.3 Surface Indexing and Classification

Teichmüller coordinates can be directly applied for index-

ing and classification of surfaces with the same topology.

The distance among shapes in the Teichmüller space can be

approximated directly using the euclidean distances among

their Teichmüller coordinates. In our experiments, we

tested genus two closed surfaces and genus three closed

surfaces.
For closed genus two surfaces, the dimension of

Teichmüller space is seven. The Teichmüller coordinates

for eight genus two teapot models are visualized in Fig. 11.

The distances in the Teichmüller space among 23 genus

two surfaces are listed in Table 2. We cluster the shapes

according to their Teichmüller distance. For example,

Table 3 shows a neighborhood of the shape of the teapot7
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TABLE 3
The Sorted Distances between Teapot7 and Other Genus Two

Models in Teichmüller Space Based on Table 2

Here, we only show the closest ones.

TABLE 4
The Sorted Distances between Pot and Other Genus Two

Models in Teichmüller Space Based on Table 2

Here, we only show models with maximum and minimum distances to
pot model.

TABLE 5
The Sorted Distances between Vase and Other Genus Two

Models in Teichmüller Space Based on Table 2

Here, we only show models with maximum and minimum distances to
pot model.

TABLE 6
The Sorted Distances between Cup and Other Genus Two

Models in Teichmüller Space Based on Table 2

Here, we only show models with maximum and minimum distances to
pot model.

TABLE 7
The Sorted Distances between World Cup and Other Genus

Two Models in Teichmüller Space Based on Table 2

Here, we only show models with maximum and minimum distances to
pot model.

TABLE 8
The Sorted Distances between Teapot3 and Other Genus Two

Models in Teichmüller Space Based on Table 2

Here, we only show models with maximum and minimum distances to
pot model.
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model in the Teichmüller space. The surface closest to the
teapot7 looks very similar to it. This matches our intuition.

More examples are illustrated in Tables 4, 5, 6, 7, 8, and 9.
For each table, we show models with the maximum and
minimum distances to example model in Teichmüller space,
based on Table 2. Furthermore, by examining Table 2, we
can also find that the knotty bottle model (the fifth model of
the first row) is farther away from all the others in the
Teichmüller space, because its geometry is quite different
from the others. Therefore, Teichmüller coordinates match
our intuition.

For closed genus three surfaces, the dimension of their
Teichmüller space is 13. We visualize the Teichmüller space
coordinates for part of those models in Fig. 12. Table 10 lists
the distances among those genus three surfaces in the
Teichmüller space.

6 CONCLUSION AND FUTURE WORK

In this work, we have proposed a novel approach for
surface indexing and classification based on Teichmüller
space theory. Teichmüller space is a finite dimensional
manifold, where each point represents a conformally
equivalent class of surfaces, and a curve represents a
deformation process from one shape to another.

As shape descriptors, Teichmüller coordinates are
succinct, discriminating and intrinsic, invariant under the
rigid motions and scalings, and insensitive to resolutions.
Furthermore, the method has solid theoretic foundation,
and the computation of Teichmüller coordinates is practical,
stable, and efficient.

This work introduces a series of algorithms for comput-
ing the Teichmüller coordinates of surfaces with negative
Euler numbers. The computational algorithms are theore-
tically sound and practically simple. The coordinates are
algebraically deduced from lengths of geodesic homotopic
to a set of special curves under the hyperbolic uniformiza-
tion metric, which is obtained by using curvature flow
method.

We verified our method on a large number of surfaces
with negative Euler number and with various geometries,
topologies, and resolutions. We apply for surface indexing
and classification applications. The extensive experiments
demonstrate the efficacy, efficiency, and robustness of our
method.

Current work focuses on the computation of Teichmüller
coordinates and approximates the geodesic distance be-
tween two points in the space by euclidean distance. In
theory, Teichmüller space has well-defined Riemannian
metrics, and the geodesics between two shapes can be
accurately computed. In the future, we will devise practical
algorithms to compute the geodesics in Teichmüller spaces,
and use geodesic distance to measure the difference
between two shapes, to apply for surface deformation and
surface morphing.
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TABLE 9
The Sorted Distances between Eight and Other Genus Two

Models in Teichmüller Space Based on Table 2

Here, we only show models with maximum and minimum distances to
pot model.

Fig. 12. The dimension of Teichmüller space coordinates for closed
genus three surfaces is 13. Here, we visualize the length coordinates of
Teichmüller space for part of genus three surfaces listed in Table 10.

TABLE 10
Distances between Genus Three Surfaces in Teichmüller Space
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APPENDIX

Algorithm 1. Compute hyperbolic uniformization metric
for each vertex vi do

for each face fijk adjacent to vertex vi do
compute a radius for vi:

#jki ¼
lkiþlij!ljk

2 ,

{lij, ljk, lki: lengths of the edges eij, ejk, eki on fijk}
end for
average the radii from the faces adjacent to vi:

#i ¼ 1
m

P
fijk2F #

jk
i ,

{m: the number of the adjacent faces to vi}
end for
{Associating each vertex with a cone of radius which
approximates the original euclidean metric.}
for each edge eij do

compute edge weight #ijðeijÞ from #i, #j using
hyperbolic cosine law:

cosh lij ¼ cosh #i cosh #j þ sinh #i sinh #j cos #ij

end for
{Assigning an edge weight to each edge based on the intersection
angle of the two cones centered with the two ending vertices of
the edge.}
repeat

for each edge eij do
compute edge length lij from the current vertices
radii #i and #j, and the fixed edge weight #ij using the
inverse of hyperbolic cosine law.

end for
{Computing edge length from current circle packing metric.}
for each face fijk do

for all face fijk do
Compute the corner angles $jki from the current edge
lengths using hyperbolic cosine law.

end for
end for
for each vertex vi do

Compute the discrete Gaussian curvature Ki on vi.
if vi is interior vertex then

Ki ¼ 2!!
P

fijk2F %
jk
i ; ð3Þ

{%jki : corner angle attached to vertex vi in the face fijk}
else if vi is boundary vertex then

Ki ¼ !!
P

fijk2F %
jk
i ; ð4Þ

end if
end for
for each vertex vi do

Update #i of each vertex vi,

#i ¼ #i þ "ð "Ki !KiÞ,

{ "Ki: target Gaussian curvature}
end for

until max j "Ki !Kij < )
{Optimizing discrete hyperbolic Ricci energy with steepest
descent method.}
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