What if a problem just feels hard to solve efficiently?
Eg: k-SAT
Recall:
In: variables $x_{1}, x_{2}, \ldots, x_{n}$ and a formula

$$
F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}
$$

of clauses, where each C_{i} of the form $\left\{y_{1} \vee y_{2} \vee \ldots \vee y_{L}\right\}$
there y_{j} is either x_{t} or $\neg x_{+}$for some z.
Out:
A boolean assignment to $\left\{x_{1}, \ldots, x_{n}\right\}$ such that F evaluates to TRUE, or NO if F is not satisfiable.

Toy Example: 'spore $n=3, m=2 \quad h=3$.
One potential input formula could bc:

$$
F=\left\{x_{1} \vee x_{2} \vee \neg x_{3}\right\} \wedge\left\{\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right\}
$$

What would we get as output here?

AI
Let $x_{1}=$ True $, x_{2}=F_{\text {ale }}, x_{3}=$ False.
Then indeed, f is satisfiable.

But hopetully you get the feel that this process might not scale well...

Naive Algorithm \rightarrow Try every assignment of x_{i} 's. (2^{n} of the)

Turns out, best known algorithm is basically that. $O\left(2^{n-(k n / k)} m^{d}\right)$ time for constants c, d.
As h grows, this just goes to 2^{n}.

Therein lies the classical motivation for the "Strong Exponential Tine Hypothesis" (SETH)

SETH: For every $\varepsilon>0$, then is a h sit.
K-SAT on n variables, m clauses, cannot be solved in $z^{(1-\varepsilon) n}$ poly m time.

Another tricky problem:
Orthogonal vectors (OV)
O O:
In: Sets $S_{1} T$ of N vectors in $\{0,1\}^{d}$
Out: Are thee $n \cdot S, v \in T$ satisfying $u \cdot v=0$?

Strategy: Reduce an arbitron instance of $K-S A T$ as $\frac{c^{n}}{2}$ input to OV, whose solution is TRUE \Rightarrow satisfiable.

Eg: k-SAT input: $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \cup \neg x_{4}\right)$
(1.) Spilt variables into sets:

$$
V_{1}=\left\{x_{1}, x_{2}\right\}, V_{2}=\left\{x_{3}, x_{4}\right\}
$$

(2.) Consider th partial assignments for U_{0} : $\left(2^{n / 2}\right.$ of the for $j=1,2$)

$$
\text { For } \left.V_{1}:\left\{\left[x_{1}=0, x_{2}=0\right],\left[x_{1}=0, x_{2}=1\right],\left[x_{1}=1, x_{2}=0\right],\left[x_{1}=1, x_{2}=1\right]\right\}\right)
$$

For each partial assignment ϕ of V_{j}, creak e $(m+z)$ length rector $v(j, \phi)=\frac{0,11,0 \mid \cdots}{0_{0}}$ clauses $\begin{array}{ll}V_{j} & 0 \text { it } b \text { satssfac the clave se, } \\ \text { Basis else }\end{array}$

Eg] for $[0,0] \in V_{1}$, lie. $x_{1}=0, x_{2}=0$)

$$
v(j, \phi)=v(1,[0,0])=[\underbrace{0,1}, 1,0,1]
$$

Rm: mold be 1,0 for all $v(2, \phi)$
$\left(\right.$ Recall SAT input: $\left.\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \cup \neg x_{4}\right)\right)$

Thu.
$v(1, \phi) \cdot v(2, \psi)=0$ iff $\phi \odot \psi$ is a sat assignment.
$N=2^{n / 2}$ vectors of dimustan $d=O(m) \rightarrow O U$ instame.
SO, a solution to $O U$ in $N^{2-\delta}$ poly (d) the for $\delta>0$ $\Rightarrow 2^{n\left(1-\frac{\delta}{2}\right)}$ poly (m) solin to sAT, $+\delta E T H$ is false.

What have ne dove?

1) - Encountered k-SAT + SETh for hardness
2). Encanterd OV
2) - Reduced huSAT to an instance of OU, thereby establishing hardness for OU according to SETH.
