Topologinal Popertirs of frickt Spaces with Dr. Frosy, Dr. Chanbus, Dr. Weark, Dr. Majhi 2/7/2022
\qquad
\qquad
\qquad

Overvicu:

Frachet Distanci

- for paths
- For graphs

Differnt spaces

- Continuors mappings
- immerstans
- embeldizs

Path conmectrity

- proot shetch for cach space
- Discus3 path-connectivity of open balls

Recall: Frichet Distance for paths Any cartmous $n o p \alpha: I \rightarrow \mathbb{R}^{d}$ is a path in \mathbb{R}^{d} The Frichet distance between two paths α_{1}, α_{2} living in R^{d} is

$$
\alpha_{F p}\left(\alpha_{1}, \alpha_{2}\right)=\min _{r i \rightarrow F \rightarrow z} \max _{t \in I} \mid \alpha_{1}(t)-\alpha_{2}(r(t) \mid
$$

(where r is all reparavetriantas of thinteral f)
Eg

Frechet Distance for spaces of Goraphs could (carcully*) do an analogars thing for graphs. Let Co a graph, and $\varphi_{1}, \varphi_{2}: G \rightarrow \mathbb{R}^{d}$ cathinous, rectifiable amps

Given homo. $\quad h: G \rightarrow G$, call induced l_{ρ} distance between φ_{1}, φ_{2} oh

$$
\| \varphi_{1}-\varphi_{2} \text { oh } \|_{\infty}=\max _{x \in G} \mid \rho_{1}(x)-\varphi_{2}(h(x) \mid
$$

and then the graph frictat listaric is

$$
d_{F G}\left(\left(G, \varphi_{1}\right),\left(G, \varphi_{2}\right)\right)=\min _{n}\left\|\varphi_{1}-\varphi_{2} \cdot h\right\|_{\infty}
$$

P ore of multiple nays to do this?

Ez $G=$
$\varphi_{1}=$

So, what does "livign"" \mathbb{R}^{d} mean for a path / graph?

Say for a path $\alpha: I \rightarrow \mathbb{R}^{d}$
3 diffemet Lefinitions:
1.) α just reeds to be cartinious π_{c}

2.] α reeds notonly contirity, but injectivity Cimbedding

$$
\pi_{\varepsilon}
$$

3.) α needs to be injective, butarly locally. Innerstion

Ditto for graphs.
Cold require, for a wop $\varphi: G \rightarrow \mathbb{R}^{d}$
1.) Just that $\varphi_{\text {is cont's } G_{C}}$

G
2.) That φ is $H G_{\varepsilon}$ Embedding

3.) That φ is any locally $1 H$ Inversion

Are thise spaces, bpologized by their respeethe frechet distances, path-corvected?
i.e. For ang $x_{0}, x_{1} \in X$
can ve construct a cathicas $\Gamma[0,1] \rightarrow X$ suchtlat $\Gamma(0)=x_{0}$ and $\Gamma(1)=x ; ?$
Π_{c} : (space of continuously wopped paths in \mathbb{R}^{d})
Yep. Just interpolate btwn $\alpha_{0}, \alpha_{1}, \Pi_{i}$
It an inage:
楽 $=\frac{3}{\left(\pi_{c}, d_{F}\right)</}$

Co, Ditto for graphs, just aterpolale along leasks. tai Let $G=\Omega$
at tine $t=0$:

$t=3 / 4$

$$
\alpha_{1}{ }^{2}
$$

tel

What if we restrict to inversions?
Need to be move careful about crossing over ourselves.
sketch of proof in a picture:
Eg. Let $G e \underset{~ d ~}{\circ}$

cross over edge

$$
\rightarrow
$$

What it ee restrict to en beddiys?
How about Π_{ε}, thespace of paths embedded in \mathbb{R}^{d} ?
Caronical Egil
shrink until "straighterough"

$$
\therefore \alpha_{2}
$$

α

unite $\quad \alpha_{1}=\alpha_{2}$
y
Rectionbity Neclel Leru
©

What about embedded graphs G_{ε} ?

Eq

$$
\text { Let } G e \sum_{2}^{\infty} \text { as before, and }
$$

If were restricted to
\mathbb{R}^{2}, \nexists a path in G_{ε}
from α_{1} to α_{2}
by Jordan curve theorem.

Pretty soon, this turns in to knot theory.

What if we restrict G_{ε} to dimension 3 ?
space of all graphs embedded in \mathbb{R}^{3} under Frichet graph distance.

Eg Suppose $G=$ Od $_{0}^{g}$ and

while $\alpha=$

Then $\alpha_{1}+\gamma_{2}$ airt path convected by
rot the org
what it en restricted to $\beta_{0}=1$?

Eg Now suppole $G=\frac{\infty}{\infty} a-d$

$$
\alpha_{1}=\left(\text { whil } \alpha_{2}=\right.
$$

well then still, in 12^{3}, the spaic G_{ε} isn't path-connected, by hnot thary.

So how about for $1 R^{d}, d \geq 4$?
In geviral, all such 1 dodinenizal krots are crikcotted TAME
in π^{4}, which fixes thr dilemina.
Honeres ae wust be carctul.
A WILD exampk!

can 1 be inkiotted in \mathbb{R}^{4} (would talle infinate nows)!
so agam rectifiability is required

$$
G_{\zeta}
$$

The next question...
Are open balls in any of throe spaces path-connected?

This is to sang, if $d_{f}\left(\alpha_{1}, \alpha_{2}\right)<\delta_{>}$, does then exist a path maintaining consistently this distance?

Using earlier ideas, re cant quite pull this off (yet) with embeddys.
(y) α_{1}

The rest to be continued

