An overview $\&$ recent directions

Born out of classical Morse Theory (Milnar '63)

- Use continuous functions to describe a topological space
- Critical points are meaningful!

Graph Representation

Level Sets

Smooth to Discrete:
Turs out, the same ideas worl in a discercte seting. (formaw) - Take same typus of functims, fut on a simpliciel complex.

A) hebraic Detin:
simplices go up in function unalu geverally as thy inerruse in dimension.
(with atmost ore exceptoo por simptre)

Link to homology:
\# of critical i-cells tounds β_{i}
l o-cell
1 1.cell

Other Definitions (Part of why DMT is so nifty.)
Topological: Gradient Vector field with arrows on K. Combinatorial: Matching s in Hosier diagram e $\sigma \in K$ not part of an arrow is deemed critical.

corresponding to heads dials ot arrows.
unmatched \rightarrow critical.

$$
\text { DAG } \rightarrow \text { Morse far }
$$

What's the use? -implify datin w/o losing homolosy. (set of instructions to collapse K)

DMF Bound B_{i}

\downarrow

$$
\beta_{0}=1
$$

$$
\beta_{1}=1
$$

Problem: Creating a discrete Mole function w/ minimal critical cells is NP, Hard. (Jog wig ct al.)
Idea: (King et al.)
Add vertex data to K and wee that. (Poly time) - Extract
2 parts: Given $F: K_{0} \rightarrow \mathbb{R}$
(i) - Raw extraction \rightarrow pair smallest lex σ_{j} largest $I \times x \sigma_{j-1}$ co'ace

- Cancel extra critical calls \rightarrow examine gradient paths from $\sigma_{j} f\left(i\right.$ to $\sigma_{j-1}+C_{j-1}$

Extract Right child: $\theta\left(d_{n}\right)$ w/ $O(n)$ space

$$
\operatorname{dim} \leq 2
$$

- Do extract Maw directly, without recursion

$$
\begin{aligned}
& n=\# \text { of } \operatorname{sim} p \cdot \text { of } k \\
& d=\operatorname{dim}(k)
\end{aligned}
$$

Es: Extract Right child:
(Collapse)
$f: k \rightarrow \mathbb{R}$ as follows:

Eg 2:1 Problem Vertex Data:

$$
\left.\begin{array}{l}
\beta_{0} \leq 2 \\
\beta_{1} \leq z
\end{array}\right\}
$$

What toes do now? Cancel'?
Thmil If \exists a gradient path from ot e $\left(;\right.$, to unique $\sigma^{\prime} t(j-1$, one may lamed both σ and σ^{\prime} by reversing the path between them, Es:

Cancelling, though "just" tho final step, has proved ti be tricky quickly.

- King does a search $\forall \delta \in C_{j}$, which has quadratic cost.
- Simple nemoination would mosh except that storage would flow uV.

Bad Ego.

c is roughly linear! $\overbrace{}^{\text {o }}$ Nasty!

What would thing et al. do??

$$
\begin{aligned}
& 2,7 \rightarrow 7 \rightarrow 1,7 \times 1 \\
& 1,7 \rightarrow 2
\end{aligned}
$$

$3,7 \rightarrow \ldots \rightarrow z$ revert
$3,7 \rightarrow 3$

$$
\begin{array}{r}
21^{*} \notin C \\
1
\end{array}
$$

crodiort path \rightarrow proportional to h simp. lorg?

Tash: I reelly wort
subquadratic lime f space
How can we (watel forthase warst wabeb?

