S.3 Applications: oder-finding and factoring

Phase estimation is useful! (5.2.1)
Recall:' Spose unitary operator U has eigenvector $|\underline{U}\rangle$ with eigenvalue $e^{2 \pi i y}$ where 1 unknown. Goal of Phase est. is to estimate $?$.
Algo: Quantum phase Estivation
Input: (1) Black boy performing controlled $\frac{U^{j}}{2 \pi i p}$ operation for $j \in \mathbb{Z}$ i
12) cigenstate $|u\rangle$ of U with eigenvalue $e^{2 \pi i p_{u}}$, and
(3) $t=n+\left[\log \left(2+\frac{1}{2_{E}}\right)\right]$ qubits initialized to 10\rangle colepends on 4 of dr gits of accuracy, all with what probability ow estimation will be surecesfl)
Output: $\frac{n \cdot b i t ~ a p p r o x i n a t i o n ~ o f ~}{e_{n}^{m}}$ to φ_{u}.
Runtime: $O\left(t^{2}\right)$ operations f one call $A h^{j}$ black box. Succeeds w/ prob. $\geq 1-\varepsilon$.
(1.) $|0\rangle|m\rangle \quad$ initializes state
(z.) $\frac{1}{\sqrt{z^{t}}} \sum_{j=0}^{z^{t}-1}|j\rangle|u\rangle \quad$ create super position
(3) $\left.\rightarrow \frac{1}{\sqrt{2^{t}}} \sum_{j=0} i_{j}\right\rangle U^{j}(u)$ apply black box

$$
\left.=\frac{1}{\sqrt{2^{t}}} \sum_{j=0}^{i^{t}-1} e^{2 \pi i ;\left[\varphi_{n}\right.}| | j\right\rangle|u\rangle
$$

(4.) $\left.\rightarrow \tilde{\varphi}_{4}\right\rangle|u\rangle$ apply inverse fourier transform $(s) \rightarrow \widetilde{U}_{u}$ measure first roister

Exciting part is the applications,
Carrying on with 5.3 ...
Can use phase estimation los order finding problem and for factoring problem. (They'r equivalent)

Step Back for a moment. Why does this matter?

- Serious evidence that quantere more poverfel than classical, and potentially credible care against (hurch-turily thesis.)
- Just intrinsically worthy problems anyways.
- -Practically, can brat RSA cherypption

Order Finding: For positive $x, N \in \mathbb{Z}, x<N$, with no com on factors. the problem is to find the order of x in $\mathbb{Z}_{n}{ }_{\text {"ring }}$ In otb words, what is the least positive r sit. $x^{r} 01(\bmod N)^{\text {? }}$.
Classical: Hard problem, aquining polynomial rasousas in the $O(L)$ bits needed to specify problem where $L \equiv \Gamma \log (N)\rceil$ is \# of bits melded to specify N.
Ex. What's the order of δ in \mathbb{Z}_{21} ? S.S.S.S.S.5
Quantum: Just phase estimation alpo with unitary operator:

$$
U|y\rangle \equiv \mid x y(\bmod N)]
$$

A little bit of work shews us that the states detind by

$$
\left|u_{s}\right\rangle=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \exp \underbrace{\left.-\frac{2 \pi i s h}{r}\right]}\left\langle x^{k} \bmod N\right\rangle,
$$

for integer $0 \leq s \leq r-1$ are eisenstates of $U, \sin c e$

$$
U\left|n_{s}\right\rangle=\frac{1}{\sqrt{r}} \sum_{i=0}^{-1} \exp \left[-\frac{2 \pi_{i} i s h}{r}\right]\left|x^{h+1} \operatorname{nod} N\right\rangle
$$

$=\exp \left[\frac{2 \pi i s}{r}\right] u_{1}>\rightarrow$ which can give es r out o 6 $\exp (2 \pi i s / r)$ with minimal work from the, (using phase estimation procedure)

To do that though, a hove 2 requirements:
51.) Must efficiently implement controlled- U^{i} operation for any $j \in \mathbb{Z}$, (2.) Must efficiently perpan eigenstate $\left\langle n_{s}\right\rangle$ with nontrivial cigonualve

For 1.) \rightarrow can do "modular exponentiation" using $O\left(l^{3}\right)$ gats (see po 228 if interested) ${ }^{\rho}$

For 2.) \rightarrow trickier, sin puparing $\left|a_{s}\right\rangle$ requires ne know r.
However, it most le that

$$
\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}|n s\rangle=117
$$

Then, we can vo phase estimation with firstregister as $t=2 L H+\left[\log \left(2+\frac{1}{2 \epsilon}\right)\right\rceil$ and second register as just 11\rangle, Lam estimate th phase $f \backsim s / r$ accurate to $Z L+1$ bits w/ prob. $\geq(1-t) / r$

This gins an estimate $\varphi \approx s / r$, but $l_{\text {in }}$ just an estimate. But know that φ is rational. Thus, if cue can compute merest fraction to 1,4 wight obtain r.

Gand this with continued fractious algorithm!'

So, coutsd fractions algo:
Goal isto describe real tis usiz integers a love, usity expressions of th form
sposer wetry $31 / 13$.
Jusp split iem up!

$$
\begin{aligned}
& \frac{31}{13}=2+\frac{5}{13} \\
& =2+\frac{1}{\frac{13}{5}} \\
& =2+\frac{\frac{\partial}{s}}{2+\frac{3}{5}}=2+\frac{1}{2+\frac{1}{\frac{1}{3}}}=2+\frac{1}{2+\frac{1}{1+\frac{1}{3}}} \\
& =2+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}} \text {. suses } O\left(L^{3}\right) \text { operatises } \\
& \text { - O(L) "split tinut", usingy } O\left(L^{2}\right) \text { gatk } \\
& \text { for basic arithutic. }
\end{aligned}
$$

Can the quantun order-finding algo fail?
No. It is complicated, but ho. see $\operatorname{pg} 229,231$ for the nitty gritty detaik of it all.

At long last: $x^{r}=1 \bmod N$ what's r?

Quantum Order Finding Aljorith:
In: (1) Black box $\underbrace{U_{1}}_{x, N}$ perforning $|j\rangle|h\rangle \rightarrow|j\rangle\left|x x^{j} / \bmod \right| N\rangle$, for x corprime to L.6.7 numbo N.
(v) $t=\underline{u}+1+\left[\log \left(2+\frac{1}{2} \varepsilon\right)\right]$ qubits initialiual to $|0\rangle$
(3) 1 qubits initialized to 17 .

Out: The least integer $r>0$ sit. $\underline{x}^{r}=1(\bmod N)$.
Runtine: $O\left(l^{3}\right)$ speaters, succeeds w/ purbability olll.
1.) $|0\rangle 11\rangle$ initial state.
2.) $\rightarrow \frac{1}{\sqrt{z^{t}}} \sum_{j=0}^{i^{t}-1}|j>11\rangle$
crate suporposition.
3.) $-\frac{1}{\sqrt{2^{+}}} \sum_{j=0}^{2^{+}-1}|j\rangle\left|x^{j} \bmod N\right\rangle \quad$ apply U_{x}, N

$$
\approx \frac{1}{\sqrt{r z^{+}}} \sum_{s=0}^{r-1} \sum_{j=0}^{2^{+}-1} \underbrace{2 \pi i s j \mid r}|j\rangle|u,\rangle
$$

4.) $\rightarrow \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left(\tilde{s}(r)\left|u_{3}\right\rangle \quad\right.$ apply inverse fouriar transtarm
S.) $\rightarrow \sqrt[s / r]{ }$ measion lstrgista
6.) $\rightarrow r$ meabure 2nd register

Factoring: turns out to be equivalent to ander-finding
Reduction:- 1.) we con compute factor of N rf ae can find nontrivial $x \neq \pm 1 \bmod N$ solution to

$$
x^{2}=1 \bmod N
$$

2.) randomly chosen y co-prime ah N has order r (likely b le ever) and sot.
$y^{r / 2} \neq \mid \bmod N$ and thus $x=y^{r / 2} \bmod n$ is non-krivial Solis to $x^{2}=1 \bmod N$.
Reduction Algo:
In: composite number N
Out: now trivial factor of N.
Runtime: $O\left((\log N)^{3}\right)$ operations, succeeds w/ probability $O(11$,
Also:

* 1.) If N ever. return 2
2.) If $N=a^{b}$ for $a \geq 1$ and $b \geq 2$, return a
3.) Randomly choose x in range 1 to $N-1$. If $G(O(x, N) \rightarrow 1$, return $\operatorname{GCO}(x, N)$
4.) Use order- finding subrotin to findorder r of $x \operatorname{radN}$

Si) it r is even and $\left.x^{r / 2} \neq-1 / \bmod N\right)$ then compute $\operatorname{gcd}\left(x^{r / 2}-1, N\right)$ and $\operatorname{gcd}\left(x^{r / 2}+1, N\right)$. If one of these is non-trivial factor, rutum it.
Else, abovith fails.

$$
\binom{\text { pt on py 284 }}{\text { if helpevl }}
$$

5.4 Additional Applications

Hiddom Subgroy Problem - encouppasses all known lexpormentially fast' applications of quantum forrior transtorn. Generalization of finding unlenom priod of a pariodic function, wher struction of donain a rayg may be intricade. Specitic in stances:

- Period finding ot a 1-Dim. functian
- Discrete logarithus

Peridel-findiz:
spose f is a periodic function producing asingle bit as output s.t. $\underline{f(x+r)}=\underline{f(x)}$ for unknown $0<r<2^{\prime \prime}$, where $x, r t\{0,1,2, \ldots\}$.
Given a quantum black box 4 performing $U|x\rangle|y\rangle \rightarrow|x\rangle \lg (\pm+|x|\rangle$ (whee \oplus denotes $t \bmod 2$), how nary black bot queries and other operations needed to determine r ?
Also that does it in one query with $O\left(L^{2}\right)$ operations othmine:

Period finding Alger."
Inputs: (1) ablack box partaking operation $\left.\left.U\right|_{x}\right\rangle|y\rangle=|x\rangle \mid y \oplus f(x| \rangle$, (2) a state to store function evaluation, initialized to 10\rangle (3.) $t=O(L+\log (l / \varepsilon))$ quits initialized to O.

Out: The least integer $r>0$ sit. $f(x+r)=f(x)$
Rentin: Gee use of $U, O\left(L^{2}\right)$ operations. Succeeds $w /$ probability $O(17$.

Proledure:

1. 10$\rangle 107$ initial state
2.) $\rightarrow \frac{1}{\sqrt{2}}+\sum_{x=0}^{2^{+}-1}|x\rangle|0\rangle \quad$ creab superposition
3.) $\left.\rightarrow \frac{1}{\sqrt{L^{+}}} \sum_{x=0}^{2^{+}-1}|x\rangle, f(x)\right\rangle$ apply U.

$$
\left.\approx \frac{1}{\sqrt{r} 2^{+}} \sum_{l=0}^{r-1} \sum_{x=0}^{2^{+}-1} e^{2 \pi_{i} l x / r}|x\rangle \right\rvert\, \hat{f}(l \mid)
$$

4.) $\left.\rightarrow \frac{1}{\sqrt{r}} \sum_{l=0}^{r-1} \tilde{l}_{l}^{\sim} / r\right\rangle|\hat{f}(\ell)\rangle \quad \frac{\text { apply inwere fovrior to }}{\text { lst register. }}$ tor
$\left.s_{1}\right) \rightarrow \int^{v} / r$
neasue lat sujister
6.$)$
S.4.2 Discrete Logarithms
what happen when function is mo r complex?
Table $f\left(x_{1}, x_{2}\right)=\underline{a^{5} \underline{x}_{1}+x_{2}} \bmod N$, and find r s.t. $a^{r} \bmod N=1$

- Periodic since $f\left(x_{1}+l, x_{2}-l s\right)=f\left(x_{1}, x_{2}\right)$
- Period is 2 -tuple $(l,-l s)$ for $l \in \mathbb{Z}$.
- Useful in cryptography
- Solvable in only on query of a quarter blade bad 11 and $O\left(\left\lceil\right.\right.$ log $\left.\eta^{2}\right)$ ot he operations.
- Algorithm is messy and complicated but takes exact sue general form as before.
(1.) Initialize 3 qubits to 107
2.) Create sype position with 2 of thew
3.) Apply U (complicated) and findson meaningful equality for inters fourier damsorm
4.) Apply inverse fourier transform bf first tho registers 5) Meade first two registers
6.) Apply gemalied cout'd factions ago.
S.4.3 The Hidden Subgrap Problem

A pattern Be emerging if given a periodic function, even a complicated one, car use quantum algos the the above to eftricintly determin the period. Bat not all periods of periods functions can be determined.

Geneal puoblow:
Let f be a function for finitely generated group G to a finite set X such that f is constant on the corsets 06 a subgroup K, and distuct on each coset. Given a quantum black box parlouning the unitary $u|g\rangle|h\rangle=\left|g \lambda_{h}+f(g)\right\rangle$ for $g \in G, h \in X$, and Θ He appropriate binary operatic on X, find a gemeting sat for K.

Takeaways of Chyoter S:

1) Whan $N=Z^{n}$, Hequantum Fovier transerm

$$
|j\rangle=\left|j, \ldots, j_{n}\right\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2 \pi i \frac{j k}{N}}|k\rangle
$$

Can be writton

$$
\text { Can be unitton }|j\rangle \rightarrow \frac{1}{2^{n / 2}}\left(|0\rangle+e^{2 x i 0 . j n}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 . j n-1 j n}|1\rangle \mid \ldots\right.
$$

$\left.(10\rangle+e^{2 \pi i 0 . j 1 i z} \ldots j n|1\rangle\right)+$ is implementable with $\theta\left(n^{2}\right)$ gates.
2.) Phase Estimation: $L_{e}|a\rangle$ be an cigenstat of operator $U \in u /$ eigenvalue $e^{2 \pi i!}$. Starting from $|0\rangle^{0+1}|u\rangle$ dog.en ability to persom $u^{2^{k}}$ for $k \in \mathbb{\psi}$, one can obtain $|\hat{\varphi}\rangle|u\rangle$, an accurrate catimation of ρ. (Upto $\int \log \left(r+\frac{1}{2 t}\right]$ bits with pubstillty $\geq 1-\varepsilon$.
3.) Order Findig: Order x moduld N is last posinin r s.t. x^{r} mod $N=1$. compatable in $O\left(L^{3}\right)$ operatios csing Q.P.E. for L-bit intgess x and N.
4.) Factoriy prive tactir of L-6i* integer N can be fandin $O\left(L^{3}\right)$ oparations by reducing probker to find ander of random nuwber x co-prine with N.
5.) Hiddur subyrop: Gervaliees allof thas fast quatur algos.

