255 Schmidt decomp. + prifications
¹⁵pose (47) is open state of a composite system, AB. Then I orthonormal
¹⁵A⁷ for system A, 1 is to system B, s.t.

$$|17\rangle = \sum_{i} \lambda_{i} |i_{i}\rangle |i_{b}\rangle \otimes$$

where $\lambda_{i} \in ||_{1}^{4}$ with $\sum_{i} \lambda_{i}^{2} = |$
Consequence:
det (47) as before. Then $p^{A} = \sum_{i} \lambda_{i}^{2} |i_{A}\rangle \langle i_{A}\rangle$ and $p^{B} = \sum_{i} \lambda_{i}^{2} |i_{B}\rangle \langle i_{B}\rangle$
So eigenvalues of p^{A} and p^{B} are λ_{i}^{2} .
(1007+1017+1117)/ N^{3}
 $tr((p^{A})^{2}) = tr((p^{B})^{2}) = \frac{3}{2}/q$
IF we have a pour state of a composite system, important projections
determed by eigen. of p have to be the same.

But
$$d\delta - \beta\gamma$$
 is just $det(\lceil k \beta \rceil) = e^{i\theta} f_k \theta ell.$
So $1012 - 1102 = 1062 - 1622$
 $\sqrt{2}$

For EPR, physical properties must correspond to an element
of reality. However, standard quantum mechanics only fells on how
to calculate such probabilities if
$$\vec{v} \cdot \vec{\sigma}$$
 is measured.
No Eurodomental element representing $\vec{v} \cdot \vec{\sigma}$ for all with \vec{v} .
For EPR, quantum Formarch incomplete. Jpin

want to return to classical framework

Bell's Inequality: (thought experiment)
Alice

$$B = t$$
:
 $R = t$

And also: $(2)E(QS+RS+RT-QT) = \sum p(q,r,s,t)qs + \sum p(q,r,s,t)rs$ grot + $\sum_{q \neq s \neq t} p(q, r, s, t) \rightarrow \sum_{q \neq s \neq t} p(q, r, s, t) q t$ = E(QS) + E(RS) + E(RT) - E(QT)Comparing both equations 1 2 gives the Bell inequality: E(QS) + E(RS) + E(RT) - E(QT) = 2 Back 2 Quantum: Let Charlie prepare 142: 1017-1107, and give on qubit to Bob & Alive. $S = -\tilde{k}_2 - \tilde{k}_2$ They observe Q=2, R= X1 T: = - X2 Vz The average values are: (QS)= 1, CRSZ L, LRT)= , QT= 1 50 (QS7 (RS) + (RT7 - (QT7 - [JJ2) ! > 2 Is this just a floke? Nature mities this experimentally. Not

So the proof of Bell ing. musthave faulty logic somewhere. 2 shetchy assumptions are made: (1) Realism. Po, Pr, Ps, Py have definite values Q, R, S, T that exist independent of observation. (2) Locality. Alsie's musurement doesn't affect Bob's maximum t,

What would some entanglement buyy we in this problem?