2.5 Schmidt decoump. + purification
'spose $|\psi\rangle$ is a pure state of a composite system, $A B$. Then \exists orthonormal $\left|i_{A}\right\rangle$ for system $A,\left|i_{B}\right\rangle$ for system B, r.t.,

$$
\left.|\psi\rangle=\sum_{i} \lambda_{i}\left\langle i_{A}\right\rangle\left|i_{B}\right\rangle\right\rangle \otimes
$$

when $\lambda_{i} \in \mathbb{R}^{+}$with $\sum_{i} \lambda_{i}^{2}=1$
Consequence:
Let $|\psi\rangle$ as before. Then $\rho^{A}=\sum ; \lambda_{1}^{2}\left|i_{A}\right\rangle\left\langle i_{A}\right|$ and $p^{B}=\sum_{i} \lambda_{i}^{2}\left|i_{B}\right\rangle\left\langle i_{B}\right|$. So eigenvalues of p^{+}and p^{8} an λ_{1}^{2}.
cg:

$$
\begin{aligned}
& \quad(|00\rangle+|0|\rangle+|11\rangle) / \sqrt{3} \\
& \operatorname{tr}\left(\left(\rho^{A}\right)^{2}\right)=\operatorname{tr}\left(\left(\rho^{B}\right)^{2}\right)=7 / 4
\end{aligned}
$$

If we have o pure state of a composite system, important properties deternand by eigen. of ρ have to be the same.
2.6 EPR ant the Bell inquality:
nom-classial vs. classical: whates the differance between worlds?
BCll ineq. a good example.
For "normal" objects cxistence is indeperdent of observation. measuremates reven physical properties.
HQuantin vize is differnt, existence doesnts seemindepandent of observation Notable Objectors: Einstcin!

Repeseert reality compledely ir thoory
Anti-Corvelatian in the EPR expriment:
'spose me have th 2 qubit state
$14\rangle=\frac{|01\rangle-110\rangle}{\sqrt{2}} \rightarrow$ entangled stade of 2 pubit system
If w weasure the spin or $\vec{v}_{\text {axis }}$ for both qubits. ($e_{1} \mathrm{~m}^{2.116 \mathrm{on} \mathrm{pg} .}{ }^{90}$) getting +1 or -1 for each quit,

- Rescits of 14 lno measwomants an aluags opposite one arothr. if

To seewhy: 'spose $|\underline{a}\rangle$ int $|6\rangle$ eigonstates of $\vec{v} \cdot \vec{\sigma}$. Ten $\exists \alpha, \beta, y, \sigma$ s.t. $|0\rangle=\alpha|a\rangle+\beta|b\rangle, \quad|1\rangle=7|a\rangle+\sigma|b\rangle$. \quad spin on \vec{V} axis

Subs fituting Gives: $\frac{|01\rangle-|10\rangle}{\sqrt{2}}=\left(\alpha \delta-\beta N \left\lvert\, \frac{|a|\rangle-\left|b_{n}\right\rangle}{\sqrt{2}}\right.\right.$

But $\alpha \delta-\beta y$ is jurat $\operatorname{det}\left(\left[\begin{array}{ll}\alpha & \beta \\ y & \delta\end{array}\right]\right)=e^{i \theta}$ for $\theta \in \mathbb{R}$.
so $\frac{|01\rangle-| | 0\rangle}{\sqrt{2}}=\frac{|a b\rangle-\left|b_{a}\right\rangle}{\sqrt{2}}$

Let entangled $|0|\rangle-|10\rangle$ belong to A lice $+B$ ob.
suppose Alice measures $\frac{\sqrt{2}}{\infty}$ (Bob weosumes $\frac{11}{\infty}$ spin $\stackrel{\rightharpoonup}{\sim}$

For EPR, physical properties must correspond to an element of reality. Honers, standard quantum mechanics only tells on how to calculate such probabilities if $\vec{v} \cdot \vec{\sigma}$ is measured.
No fundamental element representing $\vec{v} \cdot \vec{\sigma}$ for all unit \vec{v}. For EPR, quantum framerorh incomplete.

But nature has had the last laugh.
wart to return to classical framework

Bell's Inequality: (thought experiment)

Alice
$Q= \pm 1$
$R= \pm 1$

s= \pm 1 \\
T= \pm 1\end{array}\right.\right.\)

Charlie prepares 2 particles, and seats on to Alice, our to Bob. Say Alice has two proportics she could masses, P_{Q} and P_{R}. She decides randomly which to measure whir she recess th particle. Bot docs the saw with P_{s} and P_{T}

Algebraic Reasoning: $Q S+R S+R T-Q T$

$$
\begin{aligned}
& Q S+k S+R T-Q T=(Q+k) S+(k-Q) S \\
& \Rightarrow \text { either }(Q+k) S=0 \text { or }(i)(R-Q) T=0 \\
& \Rightarrow Q S+n S+R T-Q T=2
\end{aligned}
$$

Now spore $p(q, r, s, t)$ is probability $Q=q, R=r, S=S$, tit.
Let $E($.$) denote man of a quantity:$
(1)

$$
\begin{aligned}
E(Q S+R S+R T-Q T) & =\sum_{q r s+} p\left(q, r_{1}^{s}, t\right)(q s+r s+r t-q t) \\
& \leq \sum_{q, s+t} p(q, r, s, t) \times 2 \\
& =2
\end{aligned}
$$

And also:

$$
\begin{aligned}
\frac{(2) E(Q S+R S+R T-Q T)}{} & =\sum_{q r s t} p(q, r, s, t) q s+\sum_{q r s t} p(q, r, s, t) r s \\
& +\sum_{q r s t} p(q, r s, t) r t-\sum_{q r s t} p(q, r, s, t) q t \\
& =E(Q s)+E(R s)+E(R T)-E(Q T)
\end{aligned}
$$

Comparing both equations 1 w 2 gins the Bell inequality:

$$
E(\underline{Q S})+E(R S)+E(R T)-E(Q T) \leq 2
$$

Bach 2 Quantum:
Let Charlie prepare $|\psi\rangle=\frac{101\rangle-110\rangle}{\sqrt{2}}$, and gin ow qubit to So $6+$ Alice.
They observe $\quad Q=Z_{1} \quad S=\frac{-Z_{2}-X_{2}}{\sqrt{2}}$

$$
R=X_{1} \quad T=\frac{\sqrt{z_{2}-X_{2}}}{\frac{\sqrt{2}}{2}}
$$

Thin a rage values are:

$$
\begin{aligned}
& \langle Q S\rangle=\frac{1}{\sqrt{2}},\langle R S\rangle=\frac{1}{\sqrt{2}},\langle R T\rangle=\frac{1}{\sqrt{2}}, Q T=-\frac{1}{\sqrt{2}} \\
& \text { so }
\end{aligned}
$$

$$
\langle Q S\rangle+\langle R S\rangle+\langle R T\rangle-\langle Q T\rangle=\langle\sqrt{2}\rangle \quad \therefore\rangle
$$

Is this just a fluke?
No! Nature rarities this experimentally.

So the proof of Bell ing. musthan faulty logic somewhere.
2 sketchy assumptions are made:
(1) Realism. $P_{0}, P_{n}, P_{s}, P_{T}$ hare definite values $Q, 2,5, T$ that exist inderomdent of observation.
(2) Locality. Alsie's mansurenent doesn't affect G06's masurnment,

The world ain't locally realistic:
What would som entanghent buy g we in this problem?

