Poking a Simplicial Complex

² Benjamin Holmgren

- ³ Montana State University, Bozeman, MT, USA
- ${}_4 \quad benjamin.holmgren@student.montana.edu$

5 Marco Huot

- 6 Montana State University, Bozeman, MT, USA
- 7 marco.huot@student.montana.edu

Bradley McCoy

- 9 School of Computing, Montana State University, Bozeman, MT, USA
- 10 bradley.mccoy@montana.edu

¹¹ Brittany Terese Fasy ^[0]

- 12 School of Computing and Dept. of Mathematical Sciences, Montana State University, Bozeman,
- 13 MT, USA
- 14 brittany.fasy@montana.edu

15 David L. Millman 💿

- 16 School of Computing, Montana State University, Bozeman, MT, USA
- 17 david.millman@montana.edu

¹⁸ — Abstract –

¹⁹ Persistent homology has been used successfully to gain information about data. This success has

 $_{20}$ increased the demand for computing the homology of a simplicial complex. For large data sets, these

- ²¹ computations are expensive. We present an educational video that illustrates how discrete Morse
- theory can be applied to simplify a simplicial complex without loosing any homological information.

²³ 2012 ACM Subject Classification Computational Geometry \rightarrow Mathematics of Computing; Geo-²⁴ metric topology

- ²⁵ Keywords and phrases Discrete Morse theory, simplicial complex, persistence homology
- ²⁶ Digital Object Identifier 10.4230/LIPIcs..2020.77
- ²⁷ Funding Brittany Terese Fasy: BTF is supported by NSF CCF 1618605, and NIH/NSF DMS
- ²⁸ 1664858.
- ²⁹ David L. Millman: DLM is supported by NSF ABI 1661530.

 $_{\rm 30}$ $\,$ Acknowledgements All authors thank the members of the CompTaG club at Montana State Uni-

 $_{\rm 31}$ $\,$ versity for their thoughtful discussions and feedback on this work.

32 1 Introduction

The amount of high dimensional data being generated continues to increase rapidly. Persistent 33 homology is useful in gaining incite into these data sets, as seen in [1,3,6,8] among others. 34 In [7], a common algorithm for computing persistent homology is given with a runtime of 35 $O(n^{\omega})$, were $\omega = \log_2(7)$ from matrix multiplication and n is the number of simplicies in the 36 simplicial complex. Currently this is the best known bound. For large data sets this runtime 37 is impractical. In [5], the authors show that discrete Morse theory can be used to reduce the 38 size of the initial complex, while retaining all homological information. This preprocessing 39 step leads to a faster algorithm for computing the homology of a simplicial complex that 40 uses less space. 41 42

⁴² In this video, we show how a simplicial complex can be simplified by a sequence of ⁴³ homotopies called *elementary collapses*. These collapses are generated by a gradient vector

© Benjamin Holmgren, Benjamin Huot, Brad McCoy, Brittany Terese Fasy, David L. Millman; licensed under Creative Commons License CC-BY Symphosium on Computational Geometry, 2020.

Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

field that is induced by a discrete Morse function. The definitions can be difficult to parse, but the geometry of the simplification is quite natural. Let σ be a simplex in a simplicial complex. Intuitively, elementary collapses eliminate σ by pairing σ with one of its faces or cofaces τ and removing both from the complex. Our video illustrates this paring and elimination by showing a finger poking a simplicial complex. Our objective is to convey how discrete Morse theory can be used to simplify simplicial complexes without changing the homotopy type of the complex.

2 Background Definitions

⁵² In this section we provide definitions of the objects that appear in our video. In general our ⁵³ notation follows that of [2]. Let K be a simplicial complex. We denote a typical p-simplex ⁵⁴ by σ^p or σ if the dimension is clear.

⁵⁵ The following definition is due to [9].

Definition 1. Let K be a simplicial complex and suppose that there is a pair of simplices $\{\sigma^{p-1}, \tau^p\}$ in K such that σ is a face of τ and σ has no other cofaces. Then $K - \{\sigma, \tau\}$ is a simplicial complex called an **elementary collapse** of K. The pair $\{\sigma, \tau\}$ is called a **free pair**.

Moreover, K and $K - \{\sigma, \tau\}$ have the same homotopy type. The concept that we hope to convey in our video is that an elementary collapse does not change the homotopy type of K and results in a simplified simplicial complex. But how do we know which simplices belong to a free pair? This is were discrete Morse theory is helpful.

▶ Definition 2. A function $f : K \to \mathbb{R}$ is a discrete Morse function, if for every $\sigma^p \in K$, the following two conditions hold:

66 **1.** $|\{\tau^{(p+1)} > \sigma | f(\tau) \le f(\sigma)\}| \le 1,$

67 **2.** $|\{\gamma^{(p-1)} < \sigma | f(\gamma) \ge f(\sigma)\}| \le 1.$

A intuitive definition is given in [4], "the function generally increases as you increase the dimension of the simplices. But we allow at most one exception per simplex." Simplices with this exception deserve special attention.

Definition 3. A simplex is regular if and only if either of the following hold

⁷² 1. There exists $\tau^{(p+1)} > \sigma$ with $f(\tau) \leq f(\sigma)$

⁷³ 2. There exists $\gamma^{(p-1)} < \sigma$ with $f(\gamma) \ge f(\sigma)$.

A simplex that is not regular is called **critical.** Conditions 1 and 2 in definition 2 cannot both be true. If $\sigma \in K$ is regular then σ has a face γ with a greater function value or a coface τ with a lesser function value but not both. We pair all regular simplices with the unique γ or τ determined by the Morse function.

⁷⁸ This leads to the definition an induced gradient vector field.

▶ Definition 4. Let f be a discrete Morse function on K. The induced gradient vector field V_f is

$$V_f := \{ (\sigma^p, \tau^{p+1}) : \sigma < \tau, f(\sigma) \ge f(\tau) \}.$$

⁷⁹ if $(\sigma, \tau) \in V_f, (\sigma, \tau)$ is called an **arrow** with **tail** σ and **head** τ .

All arrows determine a free pair. Our video shows how we can collapse free pairs without changing the homotopy of K. To summerize, we begin with a simplicial complex K, then assign real values to each simplex satisfying the definition of a morse function, f on K. Next, we pair all regular simplices in K with the simplex determined by the Morse function. This gives us a gradient vector field that determines free pairs. Finally, we collapse free pairs leaving us with the simplex consisting of critical simplices.

86 3 Video

The video begins by defining a simplicial complex and giving an example that will be used throughout the video, K, which consists of a tetrahedron, two cycles, a triangle and two edges. We also give a non-example. We then attempt to give an intuitive feeling for simplicial homology as 'holes' of various dimensions. We explain that computing the Betti numbers involves considering all simplicies in K and that this is computationally expensive.

The next scene introduces discrete Morse functions. We illustrate the values of a Morse function on K. Then we depict how a discrete Morse function induces a gradient vector field on the simplicial complex.

Now the video shows a finger poking the simplicial complex on paired simplicies. The poked simplicies are removed and we see a simplified simplicial complex K' which is K with all free pairs collapsed. When the finger is done poking we are left with two connected triangles, which is the same homotopy type as our original simplicial complex K.

99 — References

100	1	Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. American
101		Mathematical Society, 2010.
102	2	Robin Forman. A user's guide to discrete morse theory. Sém. Lothar. Combin., 42:Art. B48c,
103		35pp, 2002.
104	3	Chad Giusti, Eva Pastalkova, Carina Curto, and Vladimir Itskov. Clique topology reveals
105		intrinsic geometric structure in neural correlations. Proceedings of the National Academy of
106		Sciences, 112(44):13455–13460, 2015.
107	4	Henry King, Kevin Knudson, and Neža Mramor. Generating discrete morse functions from
108		point data. Experiment. Math, 14:435–444, 2005. MR2193806.
109	5	Konstantin Mischaikow and Vidit Nanda. Morse theory for filtrations and efficient computation
110		of persistent homology. Discrete Comput Geom, (50):330, 2013.
111	6	Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson. Topology based data analysis
112		identifies a subgroup of breast cancers with a unique mutational profile and excellent survival.
113		Proceedings of the National Academy of Sciences, 108(17):7265–7270, 2011.
114	7	Primoz Skraba Nikola Milosavljevic, Dmitriy Morozov. Zigzag persistent homology in matrix
115		multiplication time. [Research Report] RR-7393, INRIA, 2010.
116	8	Abbas H. Rizvi, Pablo G. Camara, Elena K. Kandror, Thomas J. Roberts, Ira Schieren, Tom
117		Maniatis, and Raul Rabadan. Single-cell topological RNA-seq analysis reveals insights into
118		cellular differentiation and development. Nature Biotechnology, 35(6):551, 2017.
	•	

 9 Nicholas A. Scoville. Discrete Morse Theory. American Mathematica Society, Providence, Rhode Island, 2019.