
Poking a Simplicial Complex1

Benjamin Holmgren2

Montana State University, Bozeman, MT, USA3

benjamin.holmgren@student.montana.edu4

Marco Huot5

Montana State University, Bozeman, MT, USA6

marco.huot@student.montana.edu7

Bradley McCoy8

School of Computing, Montana State University, Bozeman, MT, USA9

bradley.mccoy@montana.edu10

Brittany Terese Fasy11

School of Computing and Dept. of Mathematical Sciences, Montana State University, Bozeman,12

MT, USA13

brittany.fasy@montana.edu14

David L. Millman15

School of Computing, Montana State University, Bozeman, MT, USA16

david.millman@montana.edu17

Abstract18

Persistent homology has been used successfully to gain information about data. This success has19

increased the demand for computing the homology of a simplicial complex. For large data sets, these20

computations are expensive. We present an educational video that illustrates how discrete Morse21

theory can be applied to simplify a simplicial complex without loosing any homological information.22
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1 Introduction32

The amount of high dimensional data being generated continues to increase rapidly. Persistent33

homology is useful in gaining incite into these data sets, as seen in [1, 3, 6, 8] among others.34

In [7], a common algorithm for computing persistent homology is given with a runtime of35

O(nω), were ω = log2(7) from matrix multiplication and n is the number of simplicies in the36

simplicial complex. Currently this is the best known bound. For large data sets this runtime37

is impractical. In [5], the authors show that discrete Morse theory can be used to reduce the38

size of the initial complex, while retaining all homological information. This preprocessing39

step leads to a faster algorithm for computing the homology of a simplicial complex that40

uses less space.41

In this video, we show how a simplicial complex can be simplified by a sequence of42

homotopies called elementary collapses. These collapses are generated by a gradient vector43
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field that is induced by a discrete Morse function. The definitions can be difficult to parse,44

but the geometry of the simplification is quite natural. Let σ be a simplex in a simplicial45

complex. Intuitively, elementary collapses eliminate σ by pairing σ with one of its faces46

or cofaces τ and removing both from the complex. Our video illustrates this paring and47

elimination by showing a finger poking a simplicial complex. Our objective is to convey how48

discrete Morse theory can be used to simplify simplicial complexes without changing the49

homotopy type of the complex.50

2 Background Definitions51

In this section we provide definitions of the objects that appear in our video. In general our52

notation follows that of [2]. Let K be a simplicial complex. We denote a typical p−simplex53

by σp or σ if the dimension is clear.54

The following definition is due to [9].55

I Definition 1. Let K be a simplicial complex and suppose that there is a pair of simplices56

{σp−1, τp} in K such that σ is a face of τ and σ has no other cofaces. Then K − {σ, τ} is57

a simplicial complex called an elementary collapse of K. The pair {σ, τ} is called a free58

pair.59

Moreover, K and K − {σ, τ} have the same homotopy type. The concept that we hope60

to convey in our video is that an elementary collapse does not change the homotopy type61

of K and results in a simplified simplicial complex . But how do we know which simplices62

belong to a free pair? This is were discrete Morse theory is helpful.63

I Definition 2. A function f : K → R is a discrete Morse function, if for every σp ∈ K,64

the following two conditions hold:65

1. |{τ (p+1) > σ|f(τ) ≤ f(σ)}| ≤ 1,66

2. |{γ(p−1) < σ|f(γ) ≥ f(σ)}| ≤ 1.67

A intuitive definition is given in [4], “the function generally increases as you increase the68

dimension of the simplices. But we allow at most one exception per simplex." Simplices with69

this exception deserve special attention.70

I Definition 3. A simplex is regular if and only if either of the following hold71

1. There exists τ (p+1) > σ with f(τ) ≤ f(σ)72

2. There exists γ(p−1) < σ with f(γ) ≥ f(σ).73

A simplex that is not regular is called critical. Conditions 1 and 2 in definition 2 cannot74

both be true. If σ ∈ K is regular then σ has a face γ with a greater function value or a75

coface τ with a lesser function value but not both. We pair all regular simplices with the76

unique γ or τ determined by the Morse function.77

This leads to the definition an induced gradient vector field.78

I Definition 4. Let f be a discrete Morse function on K. The induced gradient vector
field Vf is

Vf := {(σp, τp+1) : σ < τ, f(σ) ≥ f(τ)}.

if (σ, τ) ∈ Vf , (σ, τ) is called an arrow with tail σ and head τ.79

All arrows determine a free pair. Our video shows how we can collapse free pairs without80

changing the homotopy of K. To summerize, we begin with a simplicial complex K, then81
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assign real values to each simplex satisfying the definition of a morse function, f on K. Next,82

we pair all regular simplices in K with the simplex determined by the Morse function. This83

gives us a gradient vector field that determines free pairs. Finally, we collapse free pairs84

leaving us with the simplex consisting of critical simplices.85

3 Video86

The video begins by defining a simplicial complex and giving an example that will be used87

throughout the video, K, which consists of a tetrahedron, two cycles, a triangle and two88

edges. We also give a non-example. We then attempt to give an intuitive feeling for simplicial89

homology as ‘holes’ of various dimensions. We explain that computing the Betti numbers90

involves considering all simplicies in K and that this is computationally expensive.91

The next scene introduces discrete Morse functions. We illustrate the values of a Morse92

function on K. Then we depict how a discrete Morse function induces a gradient vector field93

on the simplicial complex.94

Now the video shows a finger poking the simplicial complex on paired simplicies. The95

poked simplicies are removed and we see a simplified simplicial complex K ′ which is K with96

all free pairs collapsed. When the finger is done poking we are left with two connected97

triangles, which is the same homotopy type as our original simplicial complex K.98
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