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Background
Classical Morse theory:
If we're given a smooth
manifold, we may interpret
the topology of that manifold
using a function to the real
numbers.

From this function, the critical points tell the story:

Introduction
Discrete Morse theory:
Can we take the ideas from smooth Morse theory
and apply them to data?

In 1998 Forman shows that many of the tools of
conventional Morse theory may be adapted to the
discrete setting.

For us, this focuses on adapting Morse theory to
a simplicial complex:

Simplicial Complex Definition by Example:
Conventionally: Combinatorially:
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Three (Equivalent) Flavors of Discrete Morse Theory
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Function values increase
as dimension increases, with
at most one exception per
simplex

Acyclic matchings in the
Hasse diagram of the 
complex dictate the function

A gradient vector
field is defined on
the complex, with
matchings between
faces and cofaces

Recent Contributions
- Generally, findinig the best possible 
discrete Morse function is NP-Hard

- King et al. show that a discrete Morse
function with data on vertices can be 
generated in polynomial time, Θ(n^2log(n)).

- We reduce this to Θ(dn), where d is the
dimension of the complex and n is the total
number of simplices. We use combinatorial
properties for our algorithm.

Our Approach (ExtractRightChild):
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Input: [2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

Step 1:3
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[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]
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Step 2:
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[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]
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First Critical Cell:
[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]
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[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]
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[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

Continuing along...

Final output:

- Improving the runtime to generate
Morse functions could prove vital in
wide ranging computational topology
applications. Historically, TDA has 
been limited by large, high 
dimensional data. Morse theory may 
be the remedy to this problem.

Our algorithm greedily exploits an
invariant of ExtractRaw, a major
subalgorithm of King et al.

We produce a rudimentary discrete
Morse function in this way. However,
we may find extranneous critical
cells. Cancelling these simplices
is a current area of research.

Importantly, the number of degree-i critical (unmatched) simplices bounds the ith Betti 
number,giving valuable insight towards the ith homology group!

Ongoing work:
- Ideally, we would reduce the entire algorithm of
King et al. to Θ(dn). To do so we conjecture new
steps to cancel extranneous critical cells

- Naive cancellation possible when there are
unique gradient paths from a critical j-simplex
to a critical j-1 simplex.

- We cancel by simply reversing a gradient path,
thereby making both participating critical cells
the contents of a matching in the complex. 

- Use a modified union-find data structure to
avoid quadratic time.

We pose an additional problem:
- What if data is dynamic? That is, what if we do
any of three things:

1.) Permute function values on vertices?
2.) Add a new simplex at will?
2.) Delete a simplex at will?

- A new paper is in the works to address these
problems. We conjecture the properties 
of our newest algorithm ExtractRightChild are the
key to these additional problems.

Lastly, an implementation for our algorithm is
available at:
https://github.com/compTAG/morse-alg/tree/master/code

Our paper published in CCCG is available on
Arxiv: https://arxiv.org/abs/2103.13882

And a video of our CCCG talk is available here:
https://www.youtube.com/watch?v=kHpD-J4EzI8
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