If You Must Choose Among Your Children, Pick the Right One

> Brittany Terese Fasy Benjamin Holmgren Bradley McCoy David L. Millman

> > Montana State University

4-7 August 2020, Saskatoon CCCG 2020

- Critical points
- Index of a critical point

- Critical points
- Index of a critical point

- Critical points
- Index of a critical point

- Critical points
- Index of a critical point

- Critical points
- Index of a critical point

- Critical points
- Index of a critical point

- Critical points
- Index of a critical point

- Critical points
- Index of a critical point

- Critical points
- Index of a critical point
- Gradient vector fields

- Critical points
- Index of a critical point
- Gradient vector fields
- Morse inequalities

Algebraically

A function $f : K \to \mathbb{R}$ such that:

 $|\{\beta \succ \sigma | f(\beta) \le f(\sigma)\}| \le 1,$

and

Algebraically

Topologically

A function $f: K \to \mathbb{R}$ such that: $|\{\beta \succ \sigma | f(\beta) \le f(\sigma)\}| \le 1,$ A gradient vector field $\{(\sigma, \tau) : \sigma \prec \tau, f(\sigma) \ge f(\tau)\}.$

and

Algebraically

Topologically

A function $f: K \to \mathbb{R}$ such that: $|\{\beta \succ \sigma | f(\beta) \le f(\sigma)\}| \le 1,$

A gradient vector field $\{(\sigma, \tau) : \sigma \prec \tau, f(\sigma) \ge f(\tau)\}.$

and

Algebraically

Topologically

A function $f : K \to \mathbb{R}$ such that:

A gradient vector field $|\{\beta \succ \sigma | f(\beta) < f(\sigma)\}| < 1, \qquad \{(\sigma, \tau) : \sigma \prec \tau, f(\sigma) > f(\tau)\}.$

and

Algebraically

Topologically

A function $f : K \to \mathbb{R}$ such that:

A gradient vector field $|\{\beta \succ \sigma | f(\beta) < f(\sigma)\}| < 1, \qquad \{(\sigma, \tau) : \sigma \prec \tau, f(\sigma) > f(\tau)\}.$

and

 $|\{\gamma \prec \sigma | f(\gamma) > f(\sigma)\}| < 1.$

v₀

Algebraically

Topologically

A function $f: K \to \mathbb{R}$ such that: $|\{\beta \succ \sigma | f(\beta) \le f(\sigma)\}| \le 1,$

A gradient vector field $\{(\sigma, \tau) : \sigma \prec \tau, f(\sigma) \ge f(\tau)\}.$

 $|\{\gamma \prec \sigma | f(\gamma) > f(\sigma)\}| < 1.$

and

Algebraically

Topologically

A function $f : K \to \mathbb{R}$ such that: $|\{\beta \succ \sigma | f(\beta) \le f(\sigma)\}| \le 1,$

and

A gradient vector field $\{(\sigma, \tau) : \sigma \prec \tau, f(\sigma) \ge f(\tau)\}.$

Combinatorially

A matching in the Hasse diagram (T, H, C, m) where $m : T \rightarrow H$.

Problem

Simplicial complexes generated from point data have function values assigned to the vertices. How does one construct a discrete Morse function that:

- minimizes the number of critical simplicies
- agrees with the data?

King, Knudson and Mramor

EXTRACT

- Input: simplicial complex K, injective function $f_0: K_0 \to \mathbb{R}$
- Output: A discrete Morse function $f : K \to \mathbb{R}$, with $f|_{K_0} = f_0$
- EXTRACTRAW and EXTRACTCANCEL
- Recursive call on $\operatorname{link}_{K}(v) := \overline{\operatorname{star}}_{K}(v) \setminus \operatorname{star}_{K}(v)$

King, Knudson and Mramor

EXTRACT

- Input: simplicial complex K, injective function $f_0: K_0 \to \mathbb{R}$
- Output: A discrete Morse function $f : K \to \mathbb{R}$, with $f|_{K_0} = f_0$
- EXTRACTRAW and EXTRACTCANCEL
- Recursive call on $\operatorname{link}_{K}(v) := \overline{\operatorname{star}}_{K}(v) \setminus \operatorname{star}_{K}(v)$

Unique GVF

• (H, T, C, m) consistent with f_0

Unique GVF

- (H, T, C, m) consistent with f_0
- Arrow matchings occur based off of lexicographical orderings

Unique GVF

- (H, T, C, m) consistent with f_0
- Arrow matchings occur based off of lexicographical orderings
- Smallest "leftmost" parent matched to largest "rightmost" child

Unique GVF

- (H, T, C, m) consistent with f_0
- Arrow matchings occur based off of lexicographical orderings
- Smallest "leftmost" parent matched to largest "rightmost" child

Unique GVF

- (H, T, C, m) consistent with f_0
- Arrow matchings occur based off of lexicographical orderings
- Smallest "leftmost" parent matched to largest "rightmost" child

• Restrictive Output!

Unique GVF

- (H, T, C, m) consistent with f_0
- Arrow matchings occur based off of lexicographical orderings
- Smallest "leftmost" parent matched to largest "rightmost" child

• Restrictive Output!

Hasse Decoration

- f₀ value of largest component vertex
- $\rho(\sigma)$, its rightmost child
- $I(\sigma)$, its leftmost parent

Hasse Decoration

- f₀ value of largest component vertex
- $\rho(\sigma)$, its rightmost child
- $I(\sigma)$, its leftmost parent

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

Asymptotic Analysis

Analysis of EXTRACTRIGHTCHILD

- Runs in O(dn) time
- Uses O(n) space

Asymptotic Analysis

Analysis of EXTRACTRIGHTCHILD

- Runs in O(dn) time
- Uses O(n) space

Analysis of $\operatorname{ExtractRaw}$

- Runtime lower bounded by $\Omega(n^2 \log n)$
- Space complexity unknown

• Given pre-existing point data on a simplicial complex

- Given pre-existing point data on a simplicial complex
- Want a function (GVF) to inform us on its topology

- Given pre-existing point data on a simplicial complex
- Want a function (GVF) to inform us on its topology
- Previous algorithms have an underlying property based on lexicographical orderings in the Hasse diagram

- Given pre-existing point data on a simplicial complex
- Want a function (GVF) to inform us on its topology
- Previous algorithms have an underlying property based on lexicographical orderings in the Hasse diagram
- Exploiting this property provides time complexity improvements

- Given pre-existing point data on a simplicial complex
- Want a function (GVF) to inform us on its topology
- Previous algorithms have an underlying property based on lexicographical orderings in the Hasse diagram
- Exploiting this property provides time complexity improvements

- Given pre-existing point data on a simplicial complex
- Want a function (GVF) to inform us on its topology
- Previous algorithms have an underlying property based on lexicographical orderings in the Hasse diagram
- Exploiting this property provides time complexity improvements

bradley.mccoy@montana.edu benjamin.holmgren1@student.montana.edu