If You Must Choose Among Your Children, Pick the Right One

Brittany Terese Fasy Benjamin Holmgren
Bradley McCoy David L. Millman
Montana State University

4-7 August 2020, Saskatoon CCCG 2020

Smooth Morse Theory

The Torus

- Critical points
- Index of a critical point

Smooth Morse Theory

The Torus

- Critical points
- Index of a critical point

Smooth Morse Theory

The Torus

- Critical points
- Index of a critical point

Smooth Morse Theory

The Torus

- Critical points
- Index of a critical point

Smooth Morse Theory

The Torus

- Critical points
- Index of a critical point

Smooth Morse Theory

The Torus

- Critical points
- Index of a critical point

Smooth Morse Theory

The Torus

- Critical points
- Index of a critical point

Smooth Morse Theory

The Torus

- Critical points
- Index of a critical point

Smooth Morse Theory

The Torus

- Critical points
- Index of a critical point
- Gradient vector fields

Smooth Morse Theory

The Torus

- Critical points
- Index of a critical point
- Gradient vector fields
- Morse inequalities

Discrete Morse Theory: Three Flavors

Algebraically

A function $f: K \rightarrow \mathbb{R}$ such that:
$|\{\beta \succ \sigma \mid f(\beta) \leq f(\sigma)\}| \leq 1$,
and
$|\{\gamma \prec \sigma \mid f(\gamma) \geq f(\sigma)\}| \leq 1$.

Discrete Morse Theory: Three Flavors

Algebraically

Topologically

A function $f: K \rightarrow \mathbb{R}$ such that:
$|\{\beta \succ \sigma \mid f(\beta) \leq f(\sigma)\}| \leq 1$,
and
$|\{\gamma \prec \sigma \mid f(\gamma) \geq f(\sigma)\}| \leq 1$.

Discrete Morse Theory: Three Flavors

Algebraically

Topologically

A function $f: K \rightarrow \mathbb{R}$ such that:
$|\{\beta \succ \sigma \mid f(\beta) \leq f(\sigma)\}| \leq 1$,
and
$|\{\gamma \prec \sigma \mid f(\gamma) \geq f(\sigma)\}| \leq 1$.

A gradient vector field
$\{(\sigma, \tau): \sigma \prec \tau, f(\sigma) \geq f(\tau)\}$.

Discrete Morse Theory: Three Flavors

Algebraically

Topologically

A function $f: K \rightarrow \mathbb{R}$ such that:	A gradient vector field
$\|\{\beta \succ \sigma \mid f(\beta) \leq f(\sigma)\}\| \leq 1$,	
$\{(\sigma, \tau): \sigma \prec \tau, f(\sigma) \geq f(\tau)\}$.	

and
$|\{\gamma \prec \sigma \mid f(\gamma) \geq f(\sigma)\}| \leq 1$.

$$
\left(\left[v_{1}\right],\left[v_{0}, v_{1}\right]\right)
$$

Discrete Morse Theory: Three Flavors

Algebraically

Topologically

A function $f: K \rightarrow \mathbb{R}$ such that:
$|\{\beta \succ \sigma \mid f(\beta) \leq f(\sigma)\}| \leq 1$,
and
$|\{\gamma \prec \sigma \mid f(\gamma) \geq f(\sigma)\}| \leq 1$.

Discrete Morse Theory: Three Flavors

Algebraically

Topologically

A function $f: K \rightarrow \mathbb{R}$ such that:	
A gradient vector field	
$\|\{\beta \succ \sigma \mid f(\beta) \leq f(\sigma)\}\| \leq 1$,	
$\{(\sigma, \tau): \sigma \prec \tau, f(\sigma) \geq f(\tau)\}$.	

and
$|\{\gamma \prec \sigma \mid f(\gamma) \geq f(\sigma)\}| \leq 1$.

Discrete Morse Theory: Three Flavors

Algebraically

A function $f: K \rightarrow \mathbb{R}$ such that:
$|\{\beta \succ \sigma \mid f(\beta) \leq f(\sigma)\}| \leq 1$,
and
$|\{\gamma \prec \sigma \mid f(\gamma) \geq f(\sigma)\}| \leq 1$.

Problem

Simplicial complexes generated from point data have function values assigned to the vertices. How does one construct a discrete Morse function that:

- minimizes the number of critical simplicies
- agrees with the data?

King, Knudson and Mramor

Extract

- Input: simplicial complex K, injective function $f_{0}: K_{0} \rightarrow \mathbb{R}$
- Output: A discrete Morse function $f: K \rightarrow \mathbb{R}$, with $\left.f\right|_{K_{0}}=f_{0}$
- ExtractRaw and ExtractCancel
- Recursive call on $\operatorname{link}_{K}(v):=\overline{\operatorname{star}}_{K}(v) \backslash \operatorname{star}_{K}(v)$

King, Knudson and Mramor

Extract

- Input: simplicial complex K, injective function $f_{0}: K_{0} \rightarrow \mathbb{R}$
- Output: A discrete Morse function $f: K \rightarrow \mathbb{R}$, with $\left.f\right|_{K_{0}}=f_{0}$
- ExtractRaw and ExtractCancel
- Recursive call on $\operatorname{link}_{K}(v):=\overline{\operatorname{star}}_{K}(v) \backslash \operatorname{star}_{K}(v)$

Properties of ExtractRaw

Unique GVF

- (H, T, C, m) consistent with f_{0}

Properties of ExtractRaw

Unique GVF

- (H, T, C, m) consistent with f_{0}
- Arrow matchings occur based off of lexicographical orderings

Properties of ExtractRaw

Unique GVF

- ($H, T, C, m)$ consistent with f_{0}
- Arrow matchings occur based off of lexicographical orderings
- Smallest "leftmost" parent matched to largest "rightmost" child

Properties of ExtractRaw

Unique GVF

- ($H, T, C, m)$ consistent with f_{0}
- Arrow matchings occur based off of lexicographical orderings
- Smallest "leftmost" parent matched to largest "rightmost" child

Properties of ExtractRaw

Unique GVF

- ($H, T, C, m)$ consistent with f_{0}
- Arrow matchings occur based off of lexicographical orderings
- Smallest "leftmost" parent matched to largest "rightmost" child

- Restrictive Output!

Properties of ExtractRaw

Unique GVF

- ($H, T, C, m)$ consistent with f_{0}
- Arrow matchings occur based off of lexicographical orderings
- Smallest "leftmost" parent matched to largest "rightmost" child

- Restrictive Output!

ExtractRightChild

Hasse Decoration

- f_{0} value of largest component vertex
- $\rho(\sigma)$, its rightmost child
- I(σ), its leftmost parent

ExtractRightChild

Hasse Decoration

- f_{0} value of largest component vertex
- $\rho(\sigma)$, its rightmost child
- $I(\sigma)$, its leftmost parent

Matchings

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

ExtractRightChild

Matchings

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

ExtractRightChild

Matchings

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

ExtractRightChild

Matchings

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

ExtractRightChild

Matchings

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

ExtractRightChild

Matchings

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

ExtractRightChild

Matchings

- Smallest lexicographical parent on Hasse diagram is head
- Largest lexicographical child on Hasse diagram is tail
- Unmatched simplices are critical

Asymptotic Analysis

Analysis of ExtractRightChild

- Runs in $O(d n)$ time
- Uses $O(n)$ space

Asymptotic Analysis

Analysis of ExtractRightChild

- Runs in $O(d n)$ time
- Uses $O(n)$ space

Analysis of ExtractRaw

- Runtime lower bounded by $\Omega\left(n^{2} \log n\right)$
- Space complexity unknown

Summary

- Given pre-existing point data on a simplicial complex

Summary

- Given pre-existing point data on a simplicial complex
- Want a function (GVF) to inform us on its topology

Summary

- Given pre-existing point data on a simplicial complex
- Want a function (GVF) to inform us on its topology
- Previous algorithms have an underlying property based on lexicographical orderings in the Hasse diagram

Summary

- Given pre-existing point data on a simplicial complex
- Want a function (GVF) to inform us on its topology
- Previous algorithms have an underlying property based on lexicographical orderings in the Hasse diagram
- Exploiting this property provides time complexity improvements

Summary

- Given pre-existing point data on a simplicial complex
- Want a function (GVF) to inform us on its topology
- Previous algorithms have an underlying property based on lexicographical orderings in the Hasse diagram
- Exploiting this property provides time complexity improvements

Summary

- Given pre-existing point data on a simplicial complex
- Want a function (GVF) to inform us on its topology
- Previous algorithms have an underlying property based on lexicographical orderings in the Hasse diagram
- Exploiting this property provides time complexity improvements

bradley.mccoy@montana.edu
benjamin.holmgren1@student.montana.edu

